進階搜尋


下載電子全文  
系統識別號 U0026-2608202014001700
論文名稱(中文) 利用有機場效電晶體偵測紫外光
論文名稱(英文) Ultraviolet light detection using organic field-effect transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 謝佳璇
研究生(英文) Chia-Hsuan Hsieh
學號 L76084048
學位類別 碩士
語文別 中文
論文頁數 135頁
口試委員 指導教授-周維揚
口試委員-鄭弘隆
口試委員-阮至正
中文關鍵字 有機薄膜電晶體  三(8-羥基喹啉)鋁  UV光  光感測器  相分離  聚[2,5-二(3-十四烷基噻吩-2-)噻吩并[3,2-b] 噻吩]  聚甲基丙烯酸甲酯  孔洞結構 
英文關鍵字 Organic thin-film transistor  Alq3  UV light  light sensor  phase separation  PBTTT  PMMA  porous structure 
學科別分類
中文摘要 本論文為使用近年常應用之有機半導體材料3-1-4 聚[2,5-二(3-十四烷基噻吩-2-)噻吩并[3,2-b] 噻吩] (Poly[2,5-bis(3-tetradecyl thiophen-2-yl)thieno[3,2-b] thiophene]) (PBTTT-C14)與半導體材料3-1-5 聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA),兩材料有相分離之特性,將兩者加入3-1-8 對二氯苯(1,4-Dichlorobenzene, DCB)之中形成溶液後,並用旋轉塗佈之方式在元件上形成半導體層,因兩材料會有相分離之特性,故將其PMMA以浸泡丙酮之方式去除後,會形成孔洞結構,將PBTTT和PMMA以不同比例做混和,會依PBTTT及PMMA之不同比例形成不同大小之孔洞,比例分別為7:3、8:2、9:1、10:0四種,再加入有機N型材料Alq3,此材料常應用在OLED上,從文獻上得知,因Alq3對應之吸收波長為400 nm,且其激發波長為550 nm,會與PBTTT之吸收波長為550 nm相對應,故將其以波長365 nm之UV光及RGB三種可見光照射不同比例PBTTT與PMMA主動層結構和是否有加Alq3之元件,並觀察其不同比例之孔洞大小及是否有加Alq3所產生之光響應(R)值和光響應度(P)值變化,進而探討孔洞結構、孔洞大小及是否有加Alq3對於元件電性及在照射不同波長光下之光感測能力。
有機感測器元件之製程為使用玻璃當成元件基板,且在玻璃基板上蒸鍍上80 nm鋁作為元件之閘極電極,並經高真空電漿蝕刻系統後形成氧化鋁,其為高介電係數之絕緣層,且可降低元件之操作電壓及臨界電壓(VT)之效果,之後以旋轉塗佈之方式在元件上塗上PI,此材料擁有良好之絕緣特性,可當成介電層使用,擋住漏電流,之後以近年來許多科學家研究之有機半導體材料PBTTT-C14來當成元件之半導體層,以旋轉塗佈之方式成長在元件上,再來此元件之汲極和源極電極使用銀作為材料蒸鍍上元件,最後將有機半導體層Alq3以蒸鍍之方式鍍在元件上,即可完成低電壓操作之有機薄膜電晶體元件。
本論文第一部分,為製作不同比例PBTTT : PMMA主動層結構加Alq3與否之有機薄膜電晶體,研究加入有機發光材料Alq3是否能讓此元件吸收其吸收波段UV光。透過AFM觀察PBTTT混慘不同比例之PMMA所造成不同大小之孔洞表面形貌,再以AFM、XRD、吸收光譜、PL、PLE去探討表面結構、結晶性、材料特性及材料能量轉移變化。
第二部分為且加入Alq3後,觀察其元件電性及施加不同汲極電壓VG下元件之光感測能力,從轉換曲線來觀察,加入Alq3後對元件電性影響並不大,並在此探討施加不同汲極電壓VG (VG = - 0.1 V、 - 0.2 V、 - 0.5 V、 - 2 V),對照UV光之光感測能力變化,可發現當元件操作在臨界電壓(VT)以下(VG = - 0.1 V時),其光感測能力最大,且以不同比例之PBTTT : PMMA主動層結構加Alq3做對比,可發現PBTTT : PMMA = 9:1加Alq3時之光感測能力最好,此結果是因PBTTT : PMMA = 9:1加Alq3時,Alq3所發螢光被PBTTT吸收後,大部分都轉成光電流,且比其他比例轉成光電流之比例高,故其有最高之光感測能力。
在實驗第三部分,將不同比例PBTTT : PMMA主動層結構加Alq3與否之有機薄膜電晶體,以不同UV光強度(1 μW、20 μW和40 μW)進行照射,觀察其光感測能力變化,發現不同比例PBTTT : PMMA主動層結構加Alq3元件可感測到光強度只有1 μW之UV光,且其光響應(R)值高達166 (mA/W),比其餘兩光強度之光響應(R)值多大約3倍,且元件在光強度為20 μW及40 μW之UV光照射下,其光響應度(P)值可達到將近3.5。從實驗結果來看,不同光強度下,加Alq3元件之光感測能力比無Alq3元件高出許多,有將近3倍之差,由此可知加Alq3後可提升元件對UV光感測能力。
第四部分實驗,為透過不同波長光去照射不同比例PBTTT : PMMA主動層結構加Alq3與否之有機薄膜電晶體,觀察在不同光源(波長365 nmUV光、波長432 nm藍光、波長533 nm綠光、波長633 nm紅光)下之光感測能力。透過實驗結果發現,加Alq3元件在UV光感測能力比無Alq3元件高出許多,此是因Alq3吸收波段約在200 nm到400 nm之間,為UV光之波段,故其只吸收UV光,但無Alq3元件在藍光及綠光之光感測能力高於加Alq3元件,此是因PBTTT之吸收波段在400 nm到700 nm之間,故其可吸收藍綠光波段之波段光,而兩元件在紅光波段之光感測能力都趨近為0,因Alq3或PBTTT都無紅光之吸收波段,故在紅光波段吸收能力趨近於0。
英文摘要 In the present research, functional organic thin-film transistors (OTFTs) were fabricated to achieve highly sensitive ultraviolet (UV) light detection. Poly[2,5-bis(3-tetradecyl thiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) blended with poly(methyl methacrylate) (PMMA) at different weight ratio was adopted as the active layer of OTFTs. After removing PMMA component, a porous PBTTT active layer was formed. Tris(8-hydroxyquinolinato) aluminum (Alq3) was deposited on the top of the PBTTT layer to serve as the UV light absorption layer. Compared with the device without the Alq3 layer, the UV light sensitivity of the devices with the Alq3 layer is increased greatly. In addition, the device made from PBTTT:PMMA of 9:1 shows the highest UV light sensitivity. We observe that after the Alq3 layer absorbs UV light, a highly efficient energy transfer from Alq3 to PBTTT can occur, resulting in the greatly enhanced UV light sensitivity of the devices. Moreover, the devices can perform an electrical response to the weak UV light intensity of 1 μW/cm2. We successfully introduce a highly efficient UV light energy transfer layer to improve the function of OTFTs on UV light detection.
論文目次 中文摘要 I
Extended Abstract IV
致謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1 有機半導體介紹及運作原理 1
1-2 有機薄膜電晶體簡介 3
1-3 有機光感測器介紹 4
1-4 研究動機 4
第二章 有機薄膜電晶體與感測器之操作原理 6
2-1 有機薄膜電晶體架構及運作原理 6
2-2 有機薄膜電晶體之電特性公式及參數 7
2-3 光感測器操作原理 10
第三章 實驗方法及實驗機台簡介 20
3-1 實驗材料 20
3-1-1 玻璃 20
3-1-2 金屬電極-鋁 20
3-1-3 聚醯亞胺(polyamide, PI) 20
3-1-4 聚[2,5-二(3-十四烷基噻吩-2-)噻吩并[3,2-b] 噻吩] (Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]) (PBTTT-C14) 21
3-1-5 聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA) 21
3-1-6 金屬電極-銀 21
3-1-7 N-甲基吡咯烷酮(NMP) 22
3-1-8 對二氯苯(1,4-Dichlorobenzene, DCB) 22
3-1-9 三(8-羥基喹啉基)(Tris(8-hydroxyquinolinato)aluminium, Alq3) 22
3-2 有機薄膜電晶體之實驗製程 22
3-2-1 玻璃基板切割和清洗 22
3-2-2 蒸鍍閘極 23
3-2-3 絕緣層氧化 23
3-2-4 有機高分子介電層 23
3-2-5 有機半導體薄膜層 24
3-2-6 蒸鍍汲極、源極電極 24
3-2-7 蒸鍍有機半導體薄膜層 24
3-3 實驗製程機台 25
3-3-1 超音波震盪器 25
3-3-2 高真空電漿蝕刻系統 25
3-3-3 旋轉塗佈機 25
3-3-4 物理氣象沉積儀(PVD) 26
3-4 實驗分析機台 26
3-4-1 原子力顯微鏡(Atomic force microscope, AFM) 26
3-4-2 半導體參數分析儀 26
3-4-3 Xray繞射分析儀(X-ray diffraction analysis) 27
3-4-4 吸收光譜儀 27
3-4-5 光激螢光光譜(PL)儀 27
3-4-6 Photoluminescence (PLE)光譜儀 28
3-4-7 光感測量測控制系統 28
第四章 實驗結果與討論 31
4-1 前言 31
4-2 半導體層薄膜分析 32
4-2-1 原子力顯微鏡(AFM)分析 32
4-2-2 XRD分析 33
4-2-3 吸收光譜分析 34
4-2-4 光激螢光(PL)光譜分析 34
4-2-5 Photoluminescence (PLE)光譜分析 35
4-3 有機薄膜電晶體電特性及UV光感測分析 36
4-3-1 元件轉換曲線分析 36
4-3-2 不同比例PBTTT : PMMA主動層結構元件之UV光感測分析 37
4-3-3 不同比例PBTTT : PMMA主動層結構元件於不同閘極電壓下之UV光感測分析 39
4-3-4 不同比例PBTTT : PMMA主動層結構元件加Alq3之UV光感測分析 41
4-3-5 不同比例PBTTT : PMMA主動層結構元件加Alq3於不同閘極電壓下之UV光感測分析 43
4-4 有機薄膜電晶體對不同強度之UV光之光感測分析 45
4-4-1 不同比例PBTTT : PMMA主動層結構元件於不同光強度下之UV光感測分析 45
4-4-2 不同比例PBTTT : PMMA主動層結構元件加Alq3於不同光強度下之UV光感測分析 47
4-4-3 不同比例PBTTT : PMMA主動層結構加入Alq3與否之元件於不同UV光強度下之光感測分析 49
4-5 有機薄膜電晶體對UV光及可見光之光感測分析 50
4-5-1 不同比例PBTTT : PMMA主動層結構元件於不同波長光下之光感測分析 50
4-5-2 不同比例PBTTT : PMMA主動層結構元件加Alq3於不同波長光下之光感測分析 52
4-5-3 不同比例PBTTT : PMMA主動層結構元件加Alq3與否於不同波長光下之光感測分析 54
第五章 結論: 125
5-1 實驗結論 125
5-2 未來工作 130
參考文獻 131
參考文獻 [1]Wenping Hu, Zhenan Bao, Klaus Muellen, ‘‘Themed issue on ‘‘organic optoelectronic materials’’ , J. Mater. Chem., 22, 4134-4135, 2012.
[2]Jesse T. E. Quinn, Jiaxin Zhu, Xu Li, Jinliang Wang, Yuning Li, ‘‘Recent progress in the development of n-type organic semiconductors for organic field effect transistors’’, Journal of Materials Chemistry C , 156, 8654-8681, 2017.
[3]Dieter Wöhrle, Dr. Dieter Meissner, ‘‘Organic Solar Cells’’, Advanced Materials, 1163, 129-138, 1991.
[4]M. Stewart, R.S. Howell, L. Pires, M.K. Hatalis, ‘‘Polysilicon TFT technology for active matrix OLED displays’’, IEEE, 556, 845 - 851, 2001.
[5]Wi Hyoung Lee, Yeong Don Park, ‘‘Organic Semiconductor/Insulator Polymer Blends for High-Performance Organic’’, Transistors Polymers, 50, 1057-1073, 2014.
[6]Yoshiaki Noguchi, Tsuyoshi Sekitani, Takao Someya, ‘‘Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers’’, Appl. Phys. Lett. 89, 253507, 2006.
[7]W. Osikowicz, M. P. de Jong, W. R. Salaneck, ‘‘Formation of the Interfacial Dipole at Organic‐Organic Interfaces: C60/Polymer Interfaces’’, Advanced Materials., 143, 4213-4217, 2007.
[8]Kaushik Balakrishnan, Aniket Datar, Randy Oitker, Hao Chen, Jianmin Zuo, and Ling Zang, ‘‘Nanobelt Self-Assembly from an Organic n-Type Semiconductor:  Propoxyethyl-PTCDI’’, ACS Publications, 364, 10496–10497, 2005.
[9]Jens A.Hauch, PavelSchilinsky, Stelios A.Choulis, RichardChilders, MarkusBiele, Christoph J.Brabec, ‘‘Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime’’, Solar Energy Materials and Solar Cells, 441, 727-731, 2008.
[10]Yen-Yi Lin, D.I. Gundlach, S.F. Nelson, T.N. Jackson, ‘‘Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime’’, IEEE, 687, 1325 - 1331, 1997.
[11]Alejandrode la Fuente Vornbrock, DonovanSung, HongkiKang, RungrotKitsomboonloha, VivekSubramanian, ‘‘Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors’’, Organic Electronics, 113, 2037-2044, 2010.
[12]Zhe Qi ab, Fengjiao Zhang, Chong-an Di, Jizheng Wang, Daoben Zhu, ‘‘All-brush-painted top-gate organic thin-film transistors’’ J. Mater. Chem. C, 1, 3072-3077, 2013.
[13]Kang Wei Chou, Hadayat Ullah Khan, Muhammad R. Niazi, Buyi Yan, Ruipeng Li, Marcia M. Payne, John E. Anthony, Detlef-M. Smilgies, Aram Amassian, ‘‘Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors’’ J. Mater. Chem. C, 2, 5681-5689, 2014.
[14]Zhiying Ma a, Hua Geng, Dong Wang, Zhigang Shuai, ‘‘Influence of alkyl side-chain length on the carrier mobility in organic semiconductors: herringbone vs. pi–pi stacking’’ J. Mater. Chem. C, 4, 4546-4555, 2016.
[15]H.Koezuka, A.Tsumura, T.Ando, ‘‘Field-effect transistor with polythiophene thin film’’ Synthetic Metals, 625, 699-704, 1987.
[16]Chin Jen Lin, S.M. Reddy, ‘‘On Delay Fault Testing in Logic Circuits’’ IEEE, 673, 694 - 703, 1987.
[17]Vineet Dua, Sumedh P. Surwade, Srikanth Ammu, Srikanth Rao Agnihotra, Sujit Jain, Kyle E. Roberts, Sungjin Park, Rodney S. Ruoff, Sanjeev K. Manohar, ‘‘All‐Organic Vapor Sensor Using Inkjet‐Printed Reduced Graphene Oxide’’ Wiley Online Library, 648, 2154-2157, 2010.
[18]C. W. Chu, J. Ouyang, J.‐H. Tseng, Y. Yang, ‘‘Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices’’ Advanced Materials, 329, 1440-1443, 2005.
[19]Daniel Elkington, Nathan Cooling, Warwick Belcher, Paul C. Dastoor, Xiaojing Zhou, ‘‘Organic Thin-Film Transistor (OTFT)-Based Sensors’’ Electronics, 77, 234-254, 2014.
[20]Giorgio Maiellaro, Egidio Ragonese, Romain Gwoziecki, Stephanie Jacobs, Nenad Marjanović, Marek Chrapa, Jürg Schleuniger, Giuseppe Palmisano, ‘‘Ambient Light Organic Sensor in a Printed Complementary Organic TFT Technology on Flexible Plastic Foil’’ IEEE, 31, 1036 - 1043, 2013.
[21]Jeffrey M. Roth, T. E. Murphy, Chris Xu, ‘‘Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube’’ OSA, 101, 2076-2078, 2002.
[22]Manish Pandey, Shyam S. Pandey, Shuichi Nagamatsu, Shuzi Hayase, Wataru Takashima, ‘‘Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: Role of macroscopic orientation’’ Organic Electronics, 30, 240-246, 2017.
[23]Abhishek Kumar Singh, A. Pandey, P. Chakrabarti, ‘‘Fabrication, modelling and characterization of green light photosensitive p-channel -Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] organic semiconductor based phototransistors’’ Organic Electronics, 3, 105424, 2019.
[24]C. J. Chiu, S. S. Shih, Wen-Yin Weng, Shoou-Jinn Chang, Z. D. Hung, Tsung-Ying Tsai, ‘‘Deep UV Ta2O5/Zinc-Indium-Tin-Oxide Thin Film Photo-Transistor’’ IEEE, 21, 1018 - 1020, 2012.
[25]D. Z. Garbuzov, V. Bulović, P. E. Burrows, S. R. Forrest, ‘‘Photoluminescence efficiency and absorption of aluminum-tris- quinolate (Alq3) thin films’’ Chemical Physics Letters, 191, 433-437, 1996.
[26]M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting, ‘‘Preparation and Characterization of Blue‐Luminescent Tris(8‐hydroxyquinoline)‐aluminum (Alq3)’’ Advanced Functional Materials, 152, 108-112, 2003.
[27]Krishna P.Dhakal, Hyunsoo Lee, Jeongyong Kim, ‘‘White light-emitting LED using electrospun Alq3/P3BT composite microfibers’’ Synthetic Metals, 10, 44-47, 2014.
[28]Gwangseok Yang, Donghwan Kim, Jihyun Kim, ‘‘Photosensitive cadmium telluride thin-film field-effect transistors’’ Optics Express, 5, 3607-3612, 2016.
[29]Manish Pandey, Shyam S.Pandey, Shuichi Nagamatsu, Shuzi Hayase, Wataru Takashima, ‘‘Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: Role of macroscopic orientation’’ Organic Electronics, 31, 240-246, 2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw