進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2608201914240100
論文名稱(中文) 磊晶拓樸絕緣體(Sb1-xBix)2Te3之費米能階調控與電性研究
論文名稱(英文) Fermi level tuning and electronic properties of epitaxial topological insulators (Sb1-xBix)2Te3
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 107
學期 2
出版年 108
研究生(中文) 林宗謀
研究生(英文) Zong-mou Lin
學號 L26061040
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-黃榮俊
口試委員-張泰榕
口試委員-鄭澄懋
中文關鍵字 拓樸絕緣體  角分析光電子能譜  費米能階  能帶結構  分子束磊晶 
英文關鍵字 Topological insulator  ARPES  Band structure  (Bi1-xSbx)2Te3 ternary alloy  Fermi level 
學科別分類
中文摘要 本實驗利用分子束磊晶(Molecular beam epitaxy, MBE)系統,製備三維拓樸絕緣體薄膜(Sb1-xBix)2Te3在C軸取向之藍寶石基板(Al2O3(0001))上,利用調控鉍(Bismuth, Bi)於成長過程中的流量,使鉍(Bismuth, Bi)摻雜進Sb2Te3中並取代銻(Antimony, Sb)的佔位,藉由反射式高能電子繞射儀(Reflection high energy electron diffraction, RHEED)、X光繞射(X-ray diffraction, XRD)的初步分析製備具有單晶C軸取向的良好品質、同樣厚度及不同鉍、銻比例的三元合金薄膜,再以原子力顯微鏡(Atomic force microscope, AFM)、拉曼光譜儀(Raman spectrometer)、穿透式電子顯微鏡(Transmission electron microscope, TEM)、角分析光電子能譜(Angle resolved photoemission spectroscopy, ARPES)、掃描穿隧式電子顯微鏡(Scanning tunneling microscopy, STM),量測材料內部特性、表面形貌與平整度、元素比例分析及能帶結構,最後將樣品經黃光微影蝕刻成Hall bar,量測常溫及低溫下的載子傳輸性質與不同溫度下片電阻的變化趨勢。由於Sb2Te3薄膜為p型材料,而Bi2Te3薄膜則為n型材料,我們發現調控鉍、銻的比例,便可達到調控費米能階的效果,進而影響其電性的變化。
英文摘要 In this experiment, we grow the (Bi1-xSbx)2Te3 ternary alloy thin film on Sapphire substrate by fixing Te and Sb flux ratio before grown by Molecular beam epitaxy. We only change the rate of Bi vapor deposition to adjust the content ratio of Bi in the film. Since the deposition rate can be controlled by beam flux monitor, which reading gas partial pressure in order to adjust the flux ratio Bi:Sb:Te = 0~1:1:17. By different doping ratios, we can tune Fermi level position to investigate transport property of n-type to p-type transition range and decrease the bulk state carrier contributions of Sb2Te3 and Bi2Te3 to enhance surface state. The Sb gas partial pressure is fixed at 3×108 (torr). Due to the lower flux ratio would improve surface roughness. Then we confirm preliminary results by in-situ RHEED, measured that the crystal structure is single crystal and the surface is flat. The crystal orientation, quality, and film thickness were confirmed by XRD and TEM. In optical measurement, E_g^1 、E_g^2 、A_1g^1 、A_1g^2 were observed by Raman spectroscopy, and four optical vibration modes were compared with the EDS analysis of TEM to estimate the proportion of Sb under different Bi flux ratio. In terms of surface characteristics, there are AFM and STM. The former can observe the layer by layer structure of the film surface and confirm the surface roughness, while the latter can observe the atomic arrangement of the surface of the film and the local electronic energy state analysis of the STS measurement. Finally, the relationship between the band structure and the carrier transmission characteristics is compared by ARPES and transport measurement.
論文目次 摘要 I
Abstract II
誌謝 V
圖目錄 VIII
表目錄 XIII
第一章、介紹 1
1-1 拓樸絕緣體的特性及其發展 1
1-2 文獻回顧 8
1-2-1 文獻(一) 8
1-2-2 文獻(二) 13
1-3 實驗動機 18
第二章、實驗相關理論 19
2-1 薄膜成長理論[25] 19
2-1-1 薄膜沉積原理 19
2-1-2 薄膜成長形式 21
2-2 霍爾效應 23
第三章、儀器介紹與製程細項 25
3-1 製程儀器與流程 25
3-1-1 分子束磊晶系統 25
3-1-2 MBE製程流程 31
3-1-3 黃光微影製程儀器(成大微奈米中心提供) 33
3-1-4、黃光微影流程 35
3-2 量測儀器 39
3-2-1 X光繞射儀(X-ray diffraction, XRD) 39
3-2-2 原子力顯微鏡(Atom Force Microscopy, AFM) 41
3-2-3 Raman光譜儀 44
3-2-4 掃描穿隧顯微鏡(Scanning Tunneling Microscopy, STM)
46
3-2-5 角分析光電子能譜(Angle resolved photoemission spectroscopy, ARPES) [38, 39] 48
第四章、實驗結果與討論 50
4-1 實驗架構 50
4-2 (Bi1-xSbx)2Te3三元合金薄膜結構分析 51
4-2-1 RHEED 51
4-2-2 X-ray Diffraction 52
4-2-3 TEM 57
4-3 (Bi1-xSbx)2Te3三元合金薄膜元素組成分析 59
4-3-1 TEM元素組成分析(EDS) 59
4-3-2 Raman光譜儀 61
4-4 (Bi1-xSbx)2Te3薄膜表面形貌與特性 64
4-4-1 AFM 64
4-4-2 STM 66
4-5 (Bi1-xSbx)2Te3薄膜能帶結構 67
4-5-1 STS 67
4-5-2 ARPES 68
4-6 (Bi1-xSbx)2Te3薄膜載子傳輸特性 70
4-6-1 室溫電性量測 70
4-6-2 低溫電性量測 72
4-6-3 變溫電性量測與比較 74
第五章、結論 77
參考文獻 78
參考文獻 [1] X.-L. Qi and S.-C. Zhang, "The quantum spin Hall effect and topological insulators," arXiv preprint arXiv:1001.1602, 2010.
[2] J. Wang and S.-C. Zhang, "Topological states of condensed matter," Nature materials, vol. 16, no. 11, p. 1062, 2017.
[3] C. L. Kane and E. J. Mele, "Quantum spin Hall effect in graphene," Physical review letters, vol. 95, no. 22, p. 226801, 2005.
[4] B. A. Bernevig and S.-C. Zhang, "Quantum spin Hall effect," Physical review letters, vol. 96, no. 10, p. 106802, 2006.
[5] M. König et al., "Quantum spin Hall insulator state in HgTe quantum wells," Science, vol. 318, no. 5851, pp. 766-770, 2007.
[6] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, "Quantum spin Hall effect and topological phase transition in HgTe quantum wells," Science, vol. 314, no. 5806, pp. 1757-1761, 2006.
[7] 黃榮俊, "拓樸絕緣體之能帶結構、輸運性質與場效電晶體元件之介紹," 物理雙月刊,
, 2017.
[8] M. König et al., "The quantum spin Hall effect: theory and experiment," Journal of the Physical Society of Japan, vol. 77, no. 3, p. 031007, 2008.
[9] C. L. Kane and E. J. Mele, "Z 2 topological order and the quantum spin Hall effect," Physical review letters, vol. 95, no. 14, p. 146802, 2005.
[10] L. Fu, C. L. Kane, and E. J. Mele, "Topological insulators in three dimensions," Physical review letters, vol. 98, no. 10, p. 106803, 2007.
[11] L. Fu and C. L. Kane, "Topological insulators with inversion symmetry," Physical Review B, vol. 76, no. 4, p. 045302, 2007.
[12] J. E. Moore and L. Balents, "Topological invariants of time-reversal-invariant band structures," Physical Review B, vol. 75, no. 12, p. 121306, 2007.
[13] M. Z. Hasan and C. L. Kane, "Colloquium: topological insulators," Reviews of modern physics, vol. 82, no. 4, p. 3045, 2010.
[14] D. Hsieh et al., "A topological Dirac insulator in a quantum spin Hall phase," Nature, vol. 452, no. 7190, p. 970, 2008.
[15] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, "Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface," Nature physics, vol. 5, no. 6, p. 438, 2009.
[16] Y. Chen et al., "Experimental realization of a three-dimensional topological insulator, Bi2Te3," science, vol. 325, no. 5937, pp. 178-181, 2009.
[17] 詹東霖, "Bi2Te3 薄膜之磊晶結構與電性研究," 成功大學物理學系學位論文, pp. 1-53, 2012.
[18] Y. Jiang et al., "Fermi-level tuning of epitaxial Sb 2 Te 3 thin films on graphene by regulating intrinsic defects and substrate transfer doping," Physical review letters, vol. 108, no. 6, p. 066809, 2012.
[19] Y. Xia et al., "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface," Nature physics, vol. 5, no. 6, p. 398, 2009.
[20] D. Hsieh et al., "Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3," Physical review letters, vol. 103, no. 14, p. 146401, 2009.
[21] D. Hsieh et al., "A tunable topological insulator in the spin helical Dirac transport regime," Nature, vol. 460, no. 7259, p. 1101, 2009.
[22] J. Zhang et al., "Band structure engineering in (Bi 1− x Sb x) 2 Te 3 ternary topological insulators," Nature communications, vol. 2, p. 574, 2011.
[23] G. Wang et al., "Atomically smooth ultrathin films of topological insulator Sb 2 Te 3," Nano Research, vol. 3, no. 12, pp. 874-880, 2010.
[24] C. Weyrich et al., "Growth, characterization, and transport properties of ternary (Bi1− x Sb x) 2Te3 topological insulator layers," Journal of Physics: Condensed Matter, vol. 28, no. 49, p. 495501, 2016.
[25] J. C. A. Huang, "ph. D Thesis," University of Illinois, 1992.
[26] E. H. Hall, "On the new action of magnetism on a permanent electric current," American Journal of Science, no. 117, pp. 161-186, 1880.
[27] 林冠廷, " 拓樸絕緣體碲化銻/碲化鉍的p-n 接面磊晶成長與研究
" 成功大學物理學系學位論文

[28] A. Y. Cho and J. Arthur, "Molecular beam epitaxy," Progress in solid state chemistry, vol. 10, pp. 157-191, 1975.
[29] J. M. Griffin, A. C. Forse, W.-Y. Tsai, P.-L. Taberna, P. Simon, and C. P. Grey, "In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors," Nature materials, vol. 14, no. 8, p. 812, 2015.
[30] 董弈, "調控多元鉍化硒合金拓樸絕緣體其電子結構, 傳輸及磁性研究," 2017.
[31] 劉昱宏, "利用分子束磊晶成長拓樸絕緣體鉍化硒參雜銻薄膜之特性分析與場效之研究應用," 2017.
[32] M. Yasaka, "X-ray thin-film measurement techniques," X-ray reflectivity measurement. The Rigaku Journal, vol. 26, no. 12, pp. 1-9, 2010.
[33] 張哲華, "厚度對於鉻及銻共摻硒化鉍拓樸絕緣體其磁電性影響之研究," 成功大學物理學系學位論文, pp. 1-46, 2017.
[34] 王洸富, "屏蔽電荷對 180 度域壁成核動態機制之影響," 成功大學物理學系學位論文, pp. 1-82, 2010.
[35] 黃英碩, "掃描探針顯微術的原理及應用," 科儀新知, no. 144, pp. 7-17, 2005.
[36] 張綺芫, "應變調製反尖晶石磁性薄膜的拉曼研究," 成功大學物理學系學位論文, pp. 1-71, 2017.
[37] M. Ternes, "Scanning tunneling spectroscopy at the single atom scale," EPFL, 2006.
[38] P.-Y. Chuang, "以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性," 成功大學物理學系學位論文, pp. 1-96, 2018.
[39] A. Damascelli, "Probing the electronic structure of complex systems by ARPES," Physica Scripta, vol. 2004, no. T109, p. 61, 2004.
[40] P. Bhattacharya, R. Fornari, and H. Kamimura, Comprehensive Semiconductor Science and Technology: Online Version. Newnes, 2011.
[41] K. Shahil, M. Hossain, D. Teweldebrhan, and A. Balandin, "Crystal symmetry breaking in few-quintuple Bi 2 Te 3 films: Applications in nanometrology of topological insulators," Applied Physics Letters, vol. 96, no. 15, p. 153103, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw