進階搜尋


下載電子全文  
系統識別號 U0026-2608201616473700
論文名稱(中文) TiO2-Y2O3 奈米柱複合陣列光催化之載子遷移特性分析
論文名稱(英文) Charge Carrier Transport Characterization of Photocatalytic TiO2-Y2O3 Nanorod Composite Arrays
校院名稱 成功大學
系所名稱(中) 尖端材料國際碩士學位學程
系所名稱(英) International Curriculum for Advanced Materials Program
學年度 104
學期 2
出版年 105
研究生(中文) 羅之磊
研究生(英文) Neon Vicente III Rosell
學號 NB6037158
學位類別 碩士
語文別 英文
論文頁數 87頁
口試委員 指導教授-張高碩
口試委員-丁志明
口試委員-陳貞夙
口試委員-黃肇瑞
中文關鍵字 TiO2  Y2O3  半導體  奈米複合材料  高效能複合材料  電性分析  遷移率  電流-電壓  電容-電壓 
英文關鍵字 TiO2  Y2O3  photocatalyst  semiconductor  nanocomposite  combinatorial methodology  electrical characterization  mobility  current-voltage  capacitance-voltage 
學科別分類
中文摘要 本實驗對TiO2-Y2O3奈米柱複合材料光觸媒的電性質做詳細研究,藉此了解TiO2與高介電常數材料結合的光觸媒效率增強效應中的內部原因,以提出此複合材料增強效應的新穎概念。
因此,我們將5x TiO2-Y2O3奈米柱高效能複合式片以及純TiO2和Y2O3,利用直流電漿濺鍍和後續高溫退火氧化長在FTO玻璃基板上,之後再利用曝光微影鍍上鋁電極使其成為元件,這些元件試片即可利用電流-電壓(IV)、電容-電壓(CV)測試。
從IV測試中,我們主要想獲得蕭基能障高度以及元件的阻抗,純材料的試片顯示兩邊電極均為蕭基接面而TiO2有較高的起始電流,另外在高效能複合材料試片TiO2端,也就是我們有興趣的一端,則因為二極體穿隧效應而偏離蕭基曲線。
電容-電壓的測試的困難處在於,試片中存在高濃度的天然缺陷,但施體濃度仍可以從此測試中獲得。藉由結合IV和CV的數據,我們成功獲得薄膜中載子的遷移率,並且得知高效能複合材料試片的TiO2端比純TiO2有更高的載子遷移率。
英文摘要 The electrical properties of a photocatalytic TiO2-Y2O3 nanocolumn nanocomposite was investigated in this research. This is to generate new insights about the novel concept of TiO2 being coupled with a high-κ material as it has been shown that the combination results in a synergistic improvement in photocatalytic efficiency.
As such, a 5x TiO2-Y2O3 nanocolumn nanocomposite sample library, as well as pure-component TiO2 and Y2O3 samples, were fabricated on FTO/glass substrate via DC metal sputtering and ex-situ annealing process. The fabricated samples were then turned into test devices by the addition of a aluminum metal top contact using photolithography. These samples were then subjected to current-voltage (IV) and capacitance-voltage (CV) testing.
The parameters desired to be extracted using IV is the exhibited Schottky barrier heights of the devices and their series resistances. The pure component samples exhibited back-to-back Schottky curves but with TiO2 exhibiting higher turn-on currents than Y2O3. The 5x combinatorial sample deviated from the expected Schottky curves by exhibiting tunneling diode behavior in the TiO2-rich site, which is around the composition of interest in this research.
Difficulties in CV testing were noted due to the highly defective nature of the samples fabricated, but donor concentration was still extracted from the data. Combining the IV and CV data, the carrier mobility values of the thin films were successfully extracted with the TiO2-rich 5x combinatorial sample exhibiting the higher mobility than that of pure TiO2.
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Dedication v
Table of Contents vi
List of Figures x
List of Tables xiii
1 Introduction 1
1.1 Statement of the Problem 1
1.2 Objective of the Study 2
1.3 Significance of the Study 3
2 Literature Survey 5
2.1 Background of Photocatalytic Materials 5
2.1.1 Mechanism of Photocatalysis 6
2.1.2 Popular photocatalysts 9
2.1.3 TiO2 as a Photocatalyst 9
2.1.3.1 Physical properties of TiO2 photocatalyts 10
2.1.3.2 Modification of TiO2 photocatalytic properties 13
2.2 Background of high dielectric constant (high κ) dielectrics 13
2.2.1 Y2O3 Properties 15
2.3 Design and Fabrication of Novel Photocatalysts 16
2.3.1 Design Considerations 16
2.3.1.1 Dimension Shaping 17
2.3.1.2 Band Gap Engineering 17
2.3.1.3 Photocatalytic Heterostructures 18
2.3.2 Survey of Fabrication Methods 19
2.3.2.1 Sputtering 19
2.3.2.2 Molecular Beam Epitaxy 20
2.3.2.3 Combinatorial Methodologies 20
2.4 Electrical Properties Characterization of Semiconductor Nanowires 21
2.4.1 Electrical characterization of TiO2 21
2.5 Empirical Models 23
2.5.1 Current Voltage (IV) Models 23
2.5.1.1 Thermionic Emission Theory 23
2.5.1.2 Mobility extraction 25
2.5.2 Capacitance Voltage (CV) Model 26
3 Experimental 28
3.1 Specifications of Materials and Reagents Used 28
3.1.1 Sputtering Targets 28
3.1.2 Gases 28
3.1.3 Substrate 28
3.1.4 Ultrasonic and Photolithography Cleaning Reagents 29
3.1.5 Photolithography Reagents 29
3.2 Fabrication Equipment and Parameters 29
3.2.1 Ultrasonic Cleaning of Substrates 29
3.2.2 Sputtering deposition 30
3.2.3 Post deposition Annealing 33
3.2.4 Photolithography 35
3.2.4.1 Spin Coating 36
3.2.4.2 UV Mask Imprinting 38
3.2.4.3 E Beam Evaporation 39
3.2.4.4 Mask and Device Design 40
3.3 Characterization Equipment 42
3.3.1 X Ray Diffractometer 42
3.3.2 Scanning Electron Microscope 43
3.3.3 Electrical Probe Station 44
3.3.3.1 Semiconductor Probe Analyzer (IV) 45
3.3.3.2 LCR Meter (CV) 46
4 Results and Discussion 47
4.1 Material Phase and Morphology 47
4.1.1 Single Material Nanocolumns 47
4.1.2 5x Combinatorial Sample 49
4.2 IV Measurements 50
4.2.1 Single Material Nanocolumns 50
4.2.2 5x Combinatorial Sample 59
4.3 CV Measurements 63
4.4 Mobility Extraction 66
5 Conclusions and Future Work 69
References: 71
Appendix A. MATLAB Code for the grain analysis 83
參考文獻 [1] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode.," Nature 238, 37–38 (1972).
[2] K. Hashimoto, H. Irie, and A. Fujishima, "TiO2 Photocatalysis: A Historical Overview and Future Prospects," Jpn. J. Appl. Phys. 44, 8269–8285 (2005).
[3] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, "Band alignment of rutile and anatase TiO2," Nat. Mater. 12, 798–801 (2013).
[4] NREL, "Solar Spectral Irradiance: Air Mass 1.5," webpage, [Online]. Available: http://rredc.nrel.gov/solar/spectra/am1.5/. [Accessed: 31-Mar-2015].
[5] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations," Chem. Soc. Rev. 44, 2893–2939 (2015).
[6] A. Fujishima, X. Zhang, and D. Tryk, "TiO2 photocatalysis and related surface phenomena," Surf. Sci. Rep. 63, 515–582 (2008).
[7] Y.-T. Chen, "Fabrication of composition spread of TiO2-Y2O3 nanorod-array composites using combinatorial reactive magnetron sputtering for photocatalytic applications," thesis, National Cheng Kung University, (2015).
[8] H.-C. Feng, "Photocatalytic application of Nanocomposites of HfO2-TiO2 Nanorod Arrays Using Sputtering," thesis, National Cheng Kung University, (2014).
[9] S. Mao, T. Shang, B. Park, D. D. Anderson, and S. J. Dillon, "Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes," Appl. Phys. Lett. 104, 153105 (2014).
[10] A. Razavieh, P. K. Mohseni, K. Jung, S. Mehrotra, S. Das, S. Suslov, X. Li, G. Klimeck, D. B. Janes, and J. Appenzeller, "Effect of Diameter Variation on Electrical Characteristics of Schottky Barrier Indium Arsenide Nanowire Field-Effect Transistors," ACS Nano 8, 6281–6287 (2014).
[11] C. Blömers, T. Grap, M. I. Lepsa, J. Moers, S. Trellenkamp, D. Grützmacher, H. Lüth, and T. Schäpers, "Hall effect measurements on InAs nanowires," Appl. Phys. Lett. 101, 152106 (2012).
[12] E. Hendry, M. Koeberg, B. O’Regan, and M. Bonn, "Local Field Effects on Electron Transport in Nanostructured TiO2 Revealed by Terahertz Spectroscopy," Nano Lett. 6, 755–759 (2006).
[13] C. Wehrenfennig, C. M. Palumbiny, H. J. Snaith, M. B. Johnston, L. Schmidt-Mende, and L. M. Herz, "Fast Charge-Carrier Trapping in TiO2 Nanotubes," J. Phys. Chem. C 119, 9159–9168 (2015).
[14] P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, and L. M. Herz, "Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells," ACS Nano 5, 5158–5166 (2011).
[15] R. O’Hayre, M. Nanu, J. Schoonman, and A. Goossens, "Mott−Schottky and Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air," J. Phys. Chem. C 111, 4809–4814 (2007).
[16] H. Wittmer, S. Holten, H. Kliem, and H. D. Breuer, "Detection of Space Charge Limited Currents in Nanoscaled Titania," Phys. status solidi 181, 461–469 (2000).
[17] V. Kytin, T. Dittrich, F. Koch, and E. Lebedev, "Injection currents and effect of negative capacitance in porous TiO2," Appl. Phys. Lett. 79, 108 (2001).
[18] B. Karunagaran, S. J. Chung, E.-K. Suh, and D. Mangalaraj, "Dielectric and transport properties of magnetron sputtered titanium dioxide thin films," Phys. B Condens. Matter 369, 129–134 (2005).
[19] M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146–7159 (2002).
[20] A. Rose, "Space-Charge-Limited Currents in Solids," Phys. Rev. 97, 1538–1544 (1955).
[21] A. Mani, C. Huisman, A. Goossens, and J. Schoonman, "Mott−Schottky Analysis and Impedance Spectroscopy of TiO2/6T and ZnO/6T devices," J. Phys. Chem. B 112, 10086–10091 (2008).
[22] M. Forsyth, D. R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, and A. J. Hill, "The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes," Solid State Ionics 147, 203–211 (2002).
[23] D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, and I. Di Somma, "Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach," Appl. Catal. B Environ. 170–171, 90–123 (2015).
[24] M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, "Recent developments in photocatalytic water treatment technology: A review," Water Res. 44, 2997–3027 (2010).
[25] S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, "Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments," Desalination 261, 3–18 (2010).
[26] S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, "Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons," ACS Nano 4, 1259–1278 (2010).
[27] V. V Kislyuk and O. P. Dimitriev, "Nanorods and nanotubes for solar cells.," J. Nanosci. Nanotechnol. 8, 131–148 (2008).
[28] P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, "TiO2 nanotubes and their application in dye-sensitized solar cells," Nanoscale 2, 45–59 (2010).
[29] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt, "Environmental Applications of Semiconductor Photocatalysis," Chem. Rev. 95, 69–96 (1995).
[30] N. S. Lewis, G. Crabtree, A. J. Nozik, M. R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz, M. Spitler, R. Ellingson, R. Overend, J. Mazer, M. Gress, J. Horwitz, C. Ashton, B. Herndon, L. Shapard, and R. M. Nault, "Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005," Washington, DC, (2005).
[31] International Energy Agency, "Excerpt from Electricity Information (2015 edition)," IEA, (2015).
[32] R. Marschall, "Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity," Adv. Funct. Mater. 24, 2421–2440 (2014).
[33] H. Zhou, Y. Qu, T. Zeid, and X. Duan, "Towards highly efficient photocatalysts using semiconductor nanoarchitectures," Energy Environ. Sci. 5, 6732 (2012).
[34] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, "Nano-photocatalytic materials: Possibilities and challenges," Adv. Mater. 24, 229–251 (2012).
[35] F. E. Osterloh, "Inorganic Materials as Catalysts for Photochemical Splitting of Water," Chem. Mater. 20, 35–54 (2008).
[36] G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, and H. Arakawa, "The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors," Appl. Catal. A Gen. 205, 117–128 (2001).
[37] M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, "Cu2O as a photocatalyst for overall water splitting under visible light irradiation," Chem. Commun. 2, 357–358 (1998).
[38] Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, and Y. Dai, "Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions," J. Phys. Chem. C 113, 14448–14453 (2009).
[39] T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, and K. Domen, "Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites," Chem. Mater. 9, 1063–1064 (1997).
[40] H. G. Kim, O. S. Becker, J. S. Jang, S. M. Ji, P. H. Borse, and J. S. Lee, "A generic method of visible light sensitization for perovskite-related layered oxides: Substitution effect of lead," J. Solid State Chem. 179, 1214–1218 (2006).
[41] S. Ogura, M. Kohno, K. Sato, and Y. Inoue, "Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M = Na, K, Rb, Cs)," Appl. Surf. Sci. 121–122, 521–524 (1997).
[42] G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, and K. Domen, "Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm)," Chem. Lett. 31, 736–737 (2002).
[43] M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, and K. Domen, "TaON and Ta3N5 as new visible light driven photocatalysts," Catal. Today 78, 555–560 (2003).
[44] T. Ohmori, H. Mametsuka, and E. Suzuki, "Photocatalytic hydrogen evolution on InP suspension with inorganic sacrificial reducing agent," Int. J. Hydrogen Energy 25, 953–955 (2000).
[45] J. R. Darwent and G. Porter, "Photochemical hydrogen production using cadmium sulphide suspensions in aerated water," J. Chem. Soc. Chem. Commun. LXVII, 145 (1981).
[46] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting.," Chem. Soc. Rev. 38, 253–278 (2009).
[47] N. Zhang, Y. Zhang, and Y.-J. Xu, "Recent progress on graphene-based photocatalysts: current status and future perspectives," Nanoscale 4, 5792 (2012).
[48] Z. Zhao, Y. Sun, and F. Dong, "Graphitic carbon nitride based nanocomposites: a review," Nanoscale 7, 15–37 (2015).
[49] K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications," J. Photochem. Photobiol. C Photochem. Rev. 13, 169–189 (2012).
[50] L. Meng, A. Ma, P. Ying, Z. Feng, and C. Li, "Sputtered Highly Ordered TiO2 Nanorod Arrays and Their Applications as the Electrode in Dye-Sensitized Solar Cells," J. Nanosci. Nanotechnol. 11, 929–934 (2011).
[51] C. W. Kim, S. J. Yeob, H.-M. Cheng, and Y. S. Kang, "A selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction," Energy Environ. Sci. 8, 3646–3653 (2015).
[52] L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng, K. Yang, and Y. Li, "Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light," ACS Catal. 6, 1097–1108 (2016).
[53] M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renew. Sustain. Energy Rev. 11, 401–425 (2007).
[54] H. Ou and S. Lo, "Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application," Sep. Purif. Technol. 58, 179–191 (2007).
[55] P. J. Wright and K. C. Saraswat, "Thickness limitations of SiO2 gate dielectrics for MOS ULSI," IEEE Trans. Electron Devices 37, 1884–1892 (1990).
[56] M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, "The high-k solution," IEEE Spectr. 44, 29–35 (2007).
[57] J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Mater. Sci. Eng. R Reports 88, 1–41 (2015).
[58] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," in 2007 IEEE International Electron Devices Meeting, 247–250 (2007).
[59] J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports Prog. Phys. 69, 327–396 (2006).
[60] J. X. Zheng, G. Ceder, T. Maxisch, W. K. Chim, and W. K. Choi, "Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study," Phys. Rev. B 73, 104101 (2006).
[61] G. Tian, Y. Chen, W. Zhou, K. Pan, C. Tian, X. Huang, and H. Fu, "3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property," CrystEngComm 13, 2994–3000 (2011).
[62] C. S. Tan, S. C. Hsu, W. H. Ke, L. J. Chen, and M. H. Huang, "Facet-dependent electrical conductivity properties of Cu2O crystals," Nano Lett. 15, 2155–2160 (2015).
[63] L. Wang, J. Ge, A. Wang, M. Deng, X. Wang, S. Bai, R. Li, J. Jiang, Q. Zhang, Y. Luo, and Y. Xiong, "Designing p-Type Semiconductor-Metal Hybrid Structures for Improved Photocatalysis," Angew. Chemie Int. Ed. 53, 5107–5111 (2014).
[64] C. Zhen, J. C. Yu, G. Liu, and H.-M. Cheng, "Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates," Chem. Commun. 50, 10416 (2014).
[65] J. L. Giocondi and G. S. Rohrer, "Structure Se nsitivity of Photochemical Oxidation and Reduction Reactions on SrTiO3 Surfaces," J. Am. Ceram. Soc. 86, 1182–1189 (2003).
[66] M. Grätzel, "Photoelectrochemical Cells," Nature 414, 338–344 (2001).
[67] A. L. Linsebigler, A. L. Linsebigler, J. T. Yates Jr, G. Lu, G. Lu, and J. T. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev. 95, 735–758 (1995).
[68] X. Chen and S. S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chem. Rev. 107, 2891–2959 (2007).
[69] H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, and Z. Sun, "A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity," Nanoscale 6, 10216 (2014).
[70] D. M. Mattox, "Physical Sputtering and Sputter Deposition (Sputtering)," in Handbook of Physical Vapor Deposition (PVD) Processing, Elsevier, 237–286 (2010).
[71] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," J. Vac. Sci. Technol. 11, 666 (1974).
[72] A. Y. Cho and J. R. Arthur, "Molecular beam epitaxy," Prog. Solid State Chem. 10, 157–191 (1975).
[73] J. S. Cooper and P. J. McGinn, "Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode," J. Power Sources 163, 330–338 (2006).
[74] E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. Smotkin, and T. Mallouk, "Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts," Science 280, 1735–1737 (1998).
[75] S. S. Mao and P. E. Burrows, "Combinatorial screening of thin film materials: An overview," J. Mater. 1, 85–91 (2015).
[76] C. Fernandes, H. E. Ruda, and A. Shik, "Hall effect in nanowires," J. Appl. Phys. 115, 234304 (2014).
[77] E. G. Marin, F. G. Ruiz, A. Godoy, I. M. Tienda-Luna, and F. Gamiz, "Size-dependent electron mobility in InAs nanowires," in 2014 44th European Solid State Device Research Conference (ESSDERC), 317–320 (2014).
[78] K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, "Spatially resolved Hall effect measurement in a single semiconductor nanowire.," Nat. Nanotechnol. 7, 718–22 (2012).
[79] S. Roddaro, K. Nilsson, G. Astromskas, L. Samuelson, L.-E. Wernersson, O. Karlström, and A. Wacker, "InAs nanowire metal-oxide-semiconductor capacitors," Appl. Phys. Lett. 92, 253509 (2008).
[80] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18, 1785 (2000).
[81] M. C. K. Sellers and E. G. Seebauer, "Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach," Thin Solid Films 519, 2103–2110 (2011).
[82] S. M. Sze, "Physics of Semiconductor Devices," 2nd ed., Taiwan, Republic of China: John Wiley & Sons, Inc., (1985).
[83] E. L. Murphy and R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region," Phys. Rev. 102, 1464–1473 (1956).
[84] D. I. Pugh, "Metal-Semiconductor Contacts," in Spin Electronics, Berlin, Heidelberg: Springer Berlin Heidelberg, 199–203 (2001).
[85] E. H. Rhoderick, "Metal-semiconductor contacts," IEE Proc. I Solid State Electron Devices 129, 1 (1982).
[86] F. A. Padovani and R. Stratton, "Field and thermionic-field emission in Schottky barriers," Solid. State. Electron. 9, 695–707 (1966).
[87] N. Spyropoulos-Antonakakis, E. Sarantopoulou, Z. Kollia, Z. Samardžija, S. Kobe, and A. C. Cefalas, "Thermionic field emission in gold nitride Schottky nanodiodes," J. Appl. Phys. 112, 094301 (2012).
[88] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol. 5, 225–229 (2010).
[89] M. Razeghi, "Fundamentals of solid state engineering, 3rd edition," 3rd ed., Boston, MA: Springer US, (2009).
[90] E.-J. Lee and S.-I. Pyun, "Analysis of nonlinear Mott-Schottky plots obtained from anodically passivating amorphous and polycrystalline TiO2 films," J. Appl. Electrochem. 22, 156–160 (1992).
[91] P. Blood and J. W. Orton, "The Electrical Characterizatioin of Semiconductors: Majority Carriers and Electron States," London: Academic Press, (1992).
[92] M. G. Helander, M. T. Greiner, Z. B. Wang, W. M. Tang, and Z. H. Lu, "Work function of fluorine doped tin oxide," J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 29, 011019 (2011).
[93] S. Y. Chiam, W. K. Chim, C. Pi, A. C. H. Huan, S. J. Wang, J. S. Pan, S. Turner, and J. Zhang, "Band alignment of yttrium oxide on various relaxed and strained semiconductor substrates," J. Appl. Phys. 103, 083702 (2008).
[94] P. Deák, B. Aradi, and T. Frauenheim, "Band Lineup and Charge Carrier Separation in Mixed Rutile-Anatase Systems," J. Phys. Chem. C 115, 3443–3446 (2011).
[95] B. Enright and D. Fitzmaurice, "Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film," J. Phys. Chem. 100, 1027–1035 (1996).
[96] X. D.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. K. Wang, H. Chang, W. G. Wallace-Freedman, S.-W. Chen, and P. G. Schultz, "A Combinatorial Approach to Materials Discovery," Science 268, 1738–1740 (1995).
[97] Z. Y. Zhang, C. H. Jin, X. L. Liang, Q. Chen, and L.-M. Peng, "Current-voltage characteristics and parameter retrieval of semiconducting nanowires," Appl. Phys. Lett. 88, 073102 (2006).
[98] T. Dittrich, E. A. Lebedev, and J. Weidmann, "Electron Drift Mobility in Porous TiO2 (Anatase)," Phys. status solidi 165, R5–R6 (1998).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw