進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2608201602210200
論文名稱(中文) 以空間學習作業探討大鼠棘徐波對學習-記憶腦區的影響
論文名稱(英文) Effect of spike-wave discharges on brain areas of learning and memory using spatial learning task
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 104
學期 2
出版年 105
研究生(中文) 黃郁馨
研究生(英文) Yu-Hsing Huang
學號 u76004046
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 召集委員-陳瑞芬
口試委員-梁勝富
口試委員-陳德祐
指導教授-蕭富仁
中文關鍵字 失神性癲癇  體感覺誘發電位  棘徐波  Long-Evans大鼠  反向制約學習次級運動皮層  海馬迴 CA1 
英文關鍵字 Absence epilepsy  somatosensory evoked potentials  Spike-wave discharges  Long-Evans rats  reversal learning  secondary motor cortex  CA1 
學科別分類
中文摘要 失神癲癇發作會伴隨棘徐波出現突然停止正在進行的動作,並且多無法對外界刺激有正確反應。癲癇患者在癲癇發作時對於熟悉與不熟悉(或是簡單與複雜)動作反應在正確率有很顯著地不同,而失神癲癇動物模型研究中發現當棘徐波出現時動物可以有顯著的正確率行為表現。目前尚未有研究進行失神癲癇動物模型在行為作業學習與再認階段下的棘徐波出現與否的行為表現以及大腦神經網路運作機轉的探討,因此本論文在知覺、運動規劃以及學習記憶相關腦區探討可能的大腦運作機轉。
論文使用T型迷宮以自我相關的臉部刺激部位與食物空間位置配對方式之反向空間關聯作業進行實驗,所有實驗都進行腦波記錄。實驗一發現在正常狀態下大鼠在八天反向空間關聯作業學習的正確率可達到~100%,但在棘徐波出現時會造成反向空間關聯作業學習完全停滯現象,而正常組學會的大鼠在反向空間關聯作業再認階段行為時不管棘徐波是否出現都能有一致的高正確率。實驗二發現在主要體感學皮層之棘徐波狀態下的體感覺誘發電位波形與非棘徐波狀態下體感覺誘發電位波形有顯著不同,且在棘徐波情況下之主要波峰或波谷的時間延遲有顯著延長以及振幅有顯著降低,但不管在棘徐波或非棘徐波狀態反向空間關聯作業前後的體感覺誘發電位波形以及其它參數都無顯著不同。實驗三發現連續三天在次級運動皮層給予促進抑制性神經傳導物質GABA接受器之蠅蕈素 (muscimol) 當下會造成反向空間關聯作業的學習延遲,但不注射蠅蕈素的後續五天學習速率卻顯著增加並在第八天正確率與注射食鹽水的控制組有~100%正確率表現;在反向空間關聯作業再認階段,蠅蕈素會顯著降低其正確率,且棘徐波出現狀態下的正確率會顯著些微低於正常狀態下正確率表現。實驗四發現連續三天在海馬迴 CA1 腦區注射蠅蕈素會完全抑制反向空間關聯作業的學習,在不注射蠅蕈素的後續五天學習速率無顯著增加且第八天正確率仍顯著低於注射食鹽水的控制組正確率;在反向空間關聯作業再認階段,蠅蕈素會顯著降低其正確率,且棘徐波出現狀態下的正確率不僅顯著低於非棘徐波狀態下正確率表現且與50%無顯著差異。
合以上實驗結果,在學習歷程中棘徐波會影響主要體覺皮層對外界刺激的知覺反應、次級運動皮層的正確行為執行表現以及海馬迴的學習角色,而對於已經學會的行為作業,海馬迴在棘徐波狀態下的正確記憶提取扮演非常重要的角色。本論文提供棘徐波狀態下認知行為作業的神經網路運作基礎 。

英文摘要 There is still lacking a systematic study to investigate possible neural network on effect of SWDs on accuracy of cognitive behavioral paradigm in both learning and retrieval phases. The present study aimed to explore possible networks of the sensation, execution, and learning and memory between SWDs and cognitive performance. This study used T maze with regard to reversal association between the self-referential vibrissae site and food palette as a reversal spatial association task (RSAT). Experiment 1 showed that the rat group under the condition of no SWD reached accuracy of ~100% at the end of 8-day learning phase of a RSAT. Experiment 2 showed extremely different waveforms of somatosensory evoked potential (SEP) in the primary somatosensory cortex under conditions of SWDs or no SWD. In experiment 3, accuracy progression had dramatically delayed when the secondary motor cortex received 3-day intracortical infusion of muscimol (a GABA agonist) within the rat group receiving muscimol, accuracy under SWD occurrence had significantly slight lower than that under the condition of no SWD. In experiment 4, accuracy revealed no change when muscimol was infusion into the CA1 for 3 days, and the accuracy showed significant difference throughout the RSAT period compared to the other group receiving saline. According to these results, SWD affected processing of external stimuli in the primary somatosensory cortex, executive processing of the secondary motor cortex, and learning processing of the CA1 during the learning phase of a RSAT. The present study suggests a possible brain network for cognitive processing under SWDs.

論文目次 中文摘要...............................................I
英文延伸摘要............................... ...........III
誌謝................................................. VII
目錄................................................VIII
表目錄..................................................X
圖目錄...............................................XI
第一章 緒論......................................... ....1
第一節 癲癇的影響........................................1
第二節 失神癲癇特徵.......................................1
第三節 大鼠棘徐波對學習記憶的影響..........................4
第四節 知覺與體感覺誘發電位的相關性.........................4
第五節 棘徐波對次級運動皮質和海馬迴CA1的影響................5
第六節 研究假說..........................................7
第二章 實驗一............................................8
第一節 介紹..............................................8
第二節 方法和材料.........................................9
第三節 結果.............................................11
第三章 實驗二...........................................13
第一節 介紹.............................................13
第二節 方法和材料.......................................14
第三節 結果............................................14
第四章 實驗三...........................................17
第一節介紹..............................................17
第二節 方法和材料........................................18
第三節 結果.............................................19
第五章 實驗三A..........................................21
第一節 介紹.............................................21
第二節 方法和材料........................................21
第三節 結果.............................................22
第六章 實驗三B .........................................24
第一節 介紹.............................................24
第二節 方法和材料........................................24
第三節 結果.............................................25
第七章 實驗四...........................................26
第一節 介紹...........................................26
第二節 方法和材料........................................26
第三節 結果.............................................28
第八章 實驗四A..........................................30
第一節 介紹.............................................30
第二節 方法和材料........................................30
第三節 結果.............................................31
第九章 討論.............................................33
第十章 結論與未來展望....................................36
第一節 結論.............................................36
第二節 未來展望.........................................36
參考文獻................................................37
參考文獻 Aker, R. G., Özkara, Ç., Dervent, A., & Onat, F. Y. (2002). Enhancement of spike and wave discharges by microinjection of bicuculline into the reticular nucleus of rats with absence epilepsy. Neuroscience letters, 322(2), 71-74.
Arnsten, A. F., & Jin, L. E. (2014). Molecular influences on working memory circuits in dorsolateral prefrontal cortex. Prog Mol Biol Transl Sci, 122, 211-231.
Beer, Z., Chwiesko, C., Kitsukawa, T., & Sauvage, M. M. (2013). Spatial and stimulus‐type tuning in the LEC, MEC, POR, PrC, CA1, and CA3 during spontaneous item recognition memory. Hippocampus, 23(12), 1425-1438.
Berman, N., & Héricourt, J. (2010). Financial factors and the margins of trade: Evidence from cross-country firm-level data. Journal of Development Economics, 93(2), 206-217.
Blumenfeld, H. (2005). Consciousness and epilepsy: why are patients with absence seizures absent? Progress in brain research, 150, 271-603.
Blumenfeld, H. (2011). Epilepsy and the consciousness system: transient vegetative state? Neurologic clinics, 29(4), 801-823.
Blumenfeld, H. (2012). Impaired consciousness in epilepsy. The Lancet Neurology, 11(9),814-826.
Blumenfeld, H., & Taylor, J. (2003). Why do seizures cause loss of consciousness? The Neuroscientist, 9(5), 301-310.
Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14515-14520.
Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641.
Buzsaki, G., Smith, A., Berger, S., Fisher, L. J., Gage, F. H., Aston-Jones, G., & Bloom, F.E. (1990). Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience, 36(1), 1-14.
Cao, V. Y., Ye, Y., Mastwal, S., Ren, M., Coon, M., Liu, Q., ... & Wang, K. H. (2015). Motor learning consolidates arc-expressing neuronal ensembles in secondary motor cortex. Neuron, 86(6), 1385-1392.
Chan, K. F., Jia, Z., Murphy, P. A., Burnham, W. M., Cortez, M. A., & Snead, O. C. (2004). Learning and memory impairment in rats with chronic atypical absence seizures. Experimental Neurology, 190(2), 328-336.
Chapeau, E. A., Gunaratne, J., Kumar, P., Chua, B. Q., Muller, J., Bard, F. A., ... & Jenkins, N. A. (2013). EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proceedings of the National Academy of Sciences, 110(31), E2885-E2894.
Chen, H. Y., Chen, J. J. J., Poon, P. W. F., & Chen, A. C. (2004). Signal Analysis Techniques for multi-site Recordings of Somatosensory Evoked Potentials in Free moving rats. Journal of Medical and Biological Engineering, 24(1), 1-8.
Chipaux, M., Vercueil, L., Kaminska, A., Mahon, S., & Charpier, S. (2013). Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings. PloS one, 8(3), 58-180.
Churchwell, J. C., & Kesner, R. P. (2011). Hippocampal-prefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behavioural brain research, 225(2), 389-395.
Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. The Journal of Neuroscience, 20(23), 8853-8860.
Coenen, A. M. L., & Van Luijtelaar, E. L. J. M. (2003). Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behavior genetics, 33(6), 635-655.
Cohen, S. J., Munchow, A. H., Rios, L. M., Zhang, G., Ásgeirsdóttir, H. N., & Stackman, R.W. (2013). The rodent hippocampus is essential for nonspatial object memory. Current Biology, 23(17), 1685-1690.
Craig, A. D. (2009). Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philosophical Transactions: Biological Sciences, 1933-1942.
Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature neuroscience, 7(2), 189-195.
Crunelli, V., & Leresche, N. (2002). Childhood absence epilepsy: genes, channels, neurons and networks. Nature Reviews Neuroscience, 3(5), 371-382.
Danober, L., Deransart, C., Depaulis, A., Vergnes, M., & Marescaux, C. (1998). Pathophysiological mechanisms of genetic absence epilepsy in the rat. Progress in neurobiology, 55(1), 27-57.
Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443-454.
De Lima, M. N., Luft, T., Roesler, R., & Schröder, N. (2006). Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neuroscience Letters, 405(1), 142-146.
Drinkenburg, W. H. I. M., Schuurmans, M. L. E. J., Coenen, A. M. L., Vossen, J. M. H., & Van Luijtelaar, E. L. J. M. (2003). Ictal stimulus processing during spike-wave discharges in genetic epileptic rats. Behavioural brain research, 143(2), 141-146.
Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070.
Fanselow, E. E., & Nicolelis, M. A. (1999). Behavioral modulation of tactile responses in the rat somatosensory system. The Journal of neuroscience, 19(17), 7603-7616.
Fanselow, E. E., Sameshima, K., Baccala, L. A., & Nicolelis, M. A. (2001). Thalamic bursting in rats during different awake behavioral states. Proceedings of the National Academy of Sciences, 98(26), 15330-15335.
Fisher, R. S., Boas, W. V. E., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470-472.
Fontanini, A., & Katz, D. B. (2005). 7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. Journal of neurophysiology, 93(5), 2832-2840.
Goshen, I., Brodsky, M., Prakash, R., Wallace, J., Gradinaru, V., Ramakrishnan, C., & Deisseroth, K. (2011). Dynamics of retrieval strategies for remote memories. Cell, 147(3), 678-689.
Gould, T. J., Rowe, W. B., Heman, K. L., Mesches, M. H., Young, D. A., Rose, G. M., & Bickford, P. C. (2002). Effects of hippocampal lesions on patterned motor learning in the rat. Brain research bulletin, 58(6), 581-586.
Hampson, R. E., Simeral, J. D., & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402(6762), 610-614.
Herkenham, M., & Pert, C. B. (1980). In vitro autoradiography of opiate receptors in rat brain suggests loci of" opiatergic" pathways. Proceedings of the National Academy of Sciences, 77(9), 5532-5536.
Hornak, J., O'doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., & Polkey, C. E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of cognitive neuroscience, 16(3), 463-478.
Hoover, W. B., & Vertes, R. P. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, 212(2), 149-179.
Hosford, D. A., & Wang, Y. (1997). Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia, 38(4), 408-414.
Huang, H. Y., Lee, H. W., Chen, S. D., & Shaw, F. Z. (2012). Lamotrigine ameliorates seizures and psychiatric comorbidity in a rat model of spontaneous absence epilepsy. Epilepsia, 53(11), 2005-2014.
Iaria, G., Chen, J. K., Guariglia, C., Ptito, A., & Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. European Journal of Neuroscience, 25(3), 890-899.
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. The journal of neuroscience, 23(13), 5945-5952.
Inoue, M., Van Luijtelaar, E. L. J. M., Vossen, J. M. H., & Coenen, A. M. L. (1992). Visual evoked potentials during spontaneously occurring spike-wave discharges in rats. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 84(2), 172-179.
Kaplan, B. J. (1985). The epileptic nature of rodent electrocortical polyspiking is still unproven. Experimental neurology, 88(2), 425-436.
Killory, B. D., Bai, X., Negishi, M., Vega, C., Spann, M. N., Vestal, M., … & Shisler, D.(2011). Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage, 56(4), 2209-2217.
Kim, H., Mansi, T., & Bernasconi, N. (2013). Disentangling hippocampal shape anomalies in epilepsy. Frontiers in neurology, 4, 1-7.
Knierim, J. J., Neunuebel, J. P., & Deshmukh, S. S. (2014). Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames. Phil. Trans. R. Soc. B, 369(1635), 1-7.
Lambrey, S., Doeller, C., Berthoz, A., & Burgess, N. (2012). Imagining being somewhere else: neural basis of changing perspective in space. Cerebral cortex, 22(1), 166-174.
Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O'Keefe, J.(1998). Knowing where and getting there: a human navigation network. Science, 280(5365), 921-924.
Manns, J. R., & Eichenbaum, H. (2009). A cognitive map for object memory in the hippocampus. Learning & Memory, 16(10), 616-624.
McAlonan, K., & Brown, V. J. (2003). Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behavioural Brain Research, 146(1), 97-103.
McQuail, J. A., Frazier, C. J., & Bizon, J. L. (2015). Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends in Molecular Medicine, 21(7), 450-460.
Meeren, H. K. M., Van Luijtelaar, E. L. J. M., & Coenen, A. M. L. (1998). Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(3), 306-319.
Meeren, H. K. M., Van Walsum, A. V. C., Van Luijtelaar, E. L. J. M., & Coenen, A. M. L.(2001). Auditory evoked potentials from auditory cortex, medial geniculate
nucleus, and inferior colliculus during sleep–wake states and spike-wave discharges in the WAG/Rij rat. Brain Research, 898(2), 321-331.
Mirsky, A. F., & Van Buren, J. M. (1965). On the nature of the “absence” in epilepsy: a study of some behavioral, electroencephalographic and autonomic factors. Electroencephalography and clinical neurophysiology, 18(4), 334-348.
Moser, M. B., & Moser, E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. The Journal of neuroscience, 18(18), 7535-7542.
Mumby, D. G., Tremblay, A., Lecluse, V., & Lehmann, H. (2005). Hippocampal damage and anterograde object‐recognition in rats after long retention intervals. Hippocampus, 15(8), 1050-1056.
Nagahara, A. H., & Handa, R. J. (1997). Fetal Alcohol Exposure Produces Delay‐Dependent Memory Deficits in Juvenile and Adult Rats. Alcoholism: Clinical and Experimental Research, 21(4), 710-715.
Narayanan, N. S., & Laubach, M. (2006). Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron, 52(5), 921-931.
Nicolelis, M. A., Baccala, L. A., Lin, R. C., & Chapin, J. K. (1995). Sensorimotor encoding by synchronous neural ensembly activity at multiple levels of the somatosensory system. Science, 268(5215), 1353-1358.
Nicolelis, M. A., & Fanselow, E. E. (2002). Dynamic shifting in thalamocortical processing during different behavioural states. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1428), 1753-1758.
Nicolelis, M. A., & Lebedev, M. A. (2009). Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature Reviews Neuroscience, 10(7), 530-540.
Niedermeyer, E., Sherman, D. L., Geocadin, R. J., Hansen, H. C., & Hanley, D. F. (1999). The burst-suppression electroencephalogram. Clinical EEG (electroencephalography), 30(3), 99-105.
O'keefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: why they fire where they fire. Experimental Brain Research, 31(4), 573-590.
Osterhagen, L., Breteler, M., & van Luijtelaar, G. (2010). Does arousal interfere with operant conditioning of spike-wave discharges in genetic epileptic rats? Epilepsy research, 90(1), 75-82.
Palmatier, R. W., Dant, R. P., Grewal, D., & Evans, K. R. (2006). Factors influencing the effectiveness of relationship marketing: a meta-analysis. Journal of marketing, 70(4), 136-153.
Pavone, A., & Niedermeyer, E. (2000). Absence seizures and the frontal lobe. Clinical EEG and Neuroscience, 31(3), 153-156.
Pereira, A., Ribeiro, S., Wiest, M., Moore, L. C., Pantoja, J., Lin, S. C., & Nicolelis, M. A. (2007). Processing of tactile information by the hippocampus. Proceedings of the National Academy of Sciences, 104(46), 18286-18291.
Polack, P. O., & Charpier, S. (2006). Intracellular activity of cortical and thalamic neurones during high‐voltage rhythmic spike discharge in Long‐Evans rats in vivo. The Journal of physiology, 571(2), 461-476.
Porter, M. C., Burk, J. A., & Mair, R. G. (2000). A comparison of the effects of hippocampal or prefrontal cortical lesions on three versions of delayed non-matching-to-sample based on positional or spatial cues. Behavioural brain research, 109(1), 69-81.
Ragozzino, M. E., & Kesner, R. P. (1998). The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behavioural brain research, 98(1), 103-112.
Reep, R. L., & Corwin, J. V. (2009). Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiology of learning and memory, 91(2), 104-113.
Sakata, S., Yamamori, T., & Sakurai, Y. (2005). 7–12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles. Neuroscience, 134(4), 1099-1111.
Sauvage, M. M., Nakamura, N. H., & Beer, Z. (2013). Mapping memory function in the medial temporal lobe with the immediate-early gene Arc. Behavioural brain research, 254, 22-33.
Seamans, J. K., Floresco, S. B., & Phillips, A. G. (1995). Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behavioral neuroscience, 109(6), 1063-1073.
Semba, K., & Komisaruk, B. R. (1984). Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience, 12(3), 761-774.
Semba, K., Szechtman, H., & Komisaruk, B. R. (1980). Synchrony among rhythmical facial tremor, neocortical ‘alpha’waves, and thalamic non-sensory neuronal bursts in intact awake rats. Brain research, 195(2), 281-298.
Shaw, F. Z. (2004). Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity? Journal of neurophysiology, 91(1), 63-77.
Shaw, F. Z. (2007). 7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation. Journal of neurophysiology, 97(1), 238-247.
Shaw, F. Z., Chuang, S. H., Shieh, K. R., & Wang, Y. J. (2009). Depression-and anxiety-like behaviors of a rat model with absence epileptic discharges. Neuroscience, 160(2), 382-393.
Shaw, F. Z., Lai, C. J., & Chiu, T. H. (2002). A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep–wake states in rats. Journal of neuroscience methods, 118(1), 77-87.
Shaw, F. Z., Lee, S. Y., & Chiu, T. H. (2006). Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat. Sleep, 29(3), 285-293.
Shaw, F. Z., & Liao, Y. F. (2005). Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats. Journal of neurophysiology, 93(5), 2435-2448.
Shmuelof, L., & Krakauer, J. W. (2011). Are we ready for a natural history of motor learning? Neuron, 72(3), 469-476.
Snead, O. C., Depaulis, A., Vergnes, M., & Marescaux, C. (1999). Absence epilepsy: advances in experimental animal models. Advances in neurology, 79, 253.
Sobolewski, A., Swiejkowski, D. A., Wróbel, A., & Kublik, E. (2011). The 5–12Hz oscillations in the barrel cortex of awake rats–Sustained attention during behavioral idling? Clinical Neurophysiology, 122(3), 483-489.
Tanaka, K. Z., Pevzner, A., Hamidi, A. B., Nakazawa, Y., Graham, J., & Wiltgen, B. J. (2014). Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron, 84(2), 347-354.
Teixeira, C. M., Pomedli, S. R., Maei, H. R., Kee, N., & Frankland, P. W. (2006). Involvement of the anterior cingulate cortex in the expression of remote spatial memory. The Journal of neuroscience, 26(29), 7555-7564.
Tort, A. B., Fontanini, A., Kramer, M. A., Jones-Lush, L. M., Kopell, N. J., & Katz, D. B. (2010). Cortical networks produce three distinct 7–12 Hz rhythms during single sensory responses in the awake rat. The Journal of Neuroscience, 30(12), 4315-4324.
Tulving, E. (2002). Episodic memory: From mind to brain. Annual review of psychology, 53(1), 1-25.
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural brain research, 146(1), 3-17.
Van Luijtelaar, G., & Sitnikova, E. (2006). Global and focal aspects of absence epilepsy: the contribution of genetic models. Neuroscience & Biobehavioral Reviews, 30(7), 983-1003.
Van Luijtelaar, E. L. J. M., Van der Werf, S. J., Vossen, J. M. H., & Coenen, A. M. L. (1991). Arousal, performance and absence seizures in rats. Electroencephalography and clinical neurophysiology, 79(5), 430-434.
Van Paesschen, W., Revesz, T., Duncan, J. S., King, M. D., & Connelly, A. (1997). Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Annals of neurology, 42(5), 756-766.
Vergnes, M., Marescaux, C., Boehrer, A., & Depaulis, A. (1991). Are rats with genetic absence epilepsy behaviorally impaired? Epilepsy research, 9(2), 97-104.
Wan, R. Q., Pang, K., & Olton, D. S. (1994). Hippocampal and amygdaloid involvement in nonspatial and spatial working memory in rats: effects of delay and interference. Behavioral neuroscience, 108(5), 866-882.
Westmacott, R., & Moscovitch, M. (2003). The contribution of autobiographical significance to semantic memory. Memory & Cognition, 31(5), 761-774.
Wiest, M. C., & Nicolelis, M. A. (2003). Behavioral detection of tactile stimuli during 7–12 Hz cortical oscillations in awake rats. Nature neuroscience, 6(9), 913-914.
Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397(6720), 613-616.
Zimmerberg, B., Sukel, H. L., & Stekler, J. D. (1991). Spatial learning of adult rats with fetal alcohol exposure: deficits are sex-dependent. Behavioural brain research, 42(1), 49-56.




論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw