進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2608201422235200
論文名稱(中文) 觸控感應面板廠導入先進規劃排程系統以解決人力排程問題—以A公司為例
論文名稱(英文) Designing advanced planning and scheduling system for touch panel plant to solve the problem of manually scheduling — Company A as a case study
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 102
學期 2
出版年 103
研究生(中文) 紀進鎧
研究生(英文) Chin-Kai Chi
學號 R37011231
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-林清河
口試委員-耿伯文
口試委員-李昇暾
口試委員-丁介人
中文關鍵字 排程  先進規劃排程系統  觸控面板 
英文關鍵字 Scheduling  Advanced planning and scheduling  Touch panel. 
學科別分類
中文摘要 由於應用觸控面板的產品種類相當繁多,觸控技術的日新月異,導致面板尺寸,製程內容也相當複雜,在觸控面板製造廠內為了配合訂單需求,常有在同時期生產多種類型產品的情形發生。但在生產過程當中,為了配合產品的特性,生產機台將需要做改造轉線,每一次的改造轉線將會浪費1~24小時不等的時間,當轉換線的次數較多時,將會嚴重影響到產能利用。且受限於後段需求變化頻繁,生產過程中的異常無法掌控,如何能有效且即時的計劃生產排程,將會是一大挑戰。
案例觸控面板廠A公司,目前生產排程仍依靠具備豐富經驗的製造工程人員手動規劃,當遇到生產異常時需作排程變更約需花費4~8小時進行排程更新。如遇到訂單需求變更等較大幅度的變動平均花費時間約需要1~3天不等,常因無法即時反應導致產能的落後與訂單達交率降低,或因手動排程規劃過程考慮不夠周詳導致額外不需要的轉線時間浪費,為此本研究評估各種生產排程理論後,選擇採用先進規劃排程系統來減少排程時間,提升反應速度,降低因失誤造成的產能浪費,並簡化生產排程規劃難易度。
在原手動規劃生產排程當中共需要7個步驟,其中在安排投入計畫、產出計畫、WIP平均化最為花費時間,故在本研究中針對這幾個步驟設計一先進規劃排程系統,藉由需求資料的匯入,設定排程需求條件後,由先進規劃排程系統自動安排出可行的生產排程,來縮短規劃生產排程的步驟,以達到縮短排程時間,簡化生產排程難易度的目的。
在實際的驗證當中,導入先進規劃排程系統讓規劃新排程的時間由原本72小時縮短到4小時,節省了約94%的排程時間,而在修改排程部分也由原本6小時降低至0.5小時,節省了約92%的重新規劃時間。
當排程簡易化後,規劃生產排程的難易度降低,也讓挑選排程人員的門檻降低,主管在挑選訓練排程人員的選擇性變多,另外在教育訓練過程當中,減少了大量產品機台生產資訊的訓練課程,以及WIP水位平均化的經驗傳承,讓教育訓練時程可以大幅縮短,避免因為人事異動所導致的排程人員空窗期產生。
英文摘要 In case study, touch screen producer Company A current production schedule planning still relies on veteran manufacturing engineer. It takes 4-8 hours to renew schedule if due to production abnormalities. If greater change arise such as order change or next month’s production schedule, then the average time spent will take approximately 1-3 days, and causing a significant fall in production yield and lower delivery rate because of unable to react instantly, or insufficient consideration in manually planning schedule cause unnecessary time waste when resetting. After evaluating various production planning theories, this work adopted the Advanced Planning and Scheduling System (APS) to simplify this process and create a system that suitable for field operation according to feature of touch screen. It will produce a suitable production schedule by insert related production information to solve problem of time waste in current manual planning method, as well as reduce planning staff training time and instantly react toward customer’s order change, it may plan a precisely and available production schedule in shortest time. The APS can find out production materials requirement and use suitable amount to reduce material surplus or shortage, and making the factory production process smoother.
論文目次 摘要 I
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的 5
1.4 研究範圍與架構 5
第二章 文獻探討 7
2.1 生產排程問題 7
2.2 生產排程使用的工具理論 10
2.3 先進規劃排程系統介紹 18
2.3.1 先進規劃排程系統涵蓋範圍 19
2.3.2 先進規劃排程系統之功能 23
2.4 文獻小結 23
第三章 研究方法與架構 25
3.1 觸控Sensor製程介紹與生產環境 25
3.2 案例工廠之生產規劃問題與研究限制 28
3.2.1 生產排程問題 28
3.2.2 研究限制 29
3.3 APS 規劃流程 30
3.4 專家訪談佐證 36
3.5 小結 38
第四章 研究結果與分析 39
4.1 先進規劃排程系統的導入 39
4.1.1 Input資訊說明 39
4.1.2 先進規劃排程系統output 42
4.2 先進規劃排程系統的效益 45
4.3 專家訪談整理 46
第五章 結論與未來研究方向 49
5.1 結論 49
5.2 研究限制 50
5.3 未來研究方向 51
參考文獻 53
參考文獻 Chen, J.C., Chao, G.C., Sun, C.J., Chao, K.J., Chien, J.W., Chen, C.C., Chiang, M.T. (2009a). Effective order assignment for color filter fabs. SID Symp Dig, 69, 1309-1312.
Chen, J.C., Huang, P.B., Wu, J.G., Lai, K.Y., Chen, C.C., & Peng, T.W. (2013). Advanced planning and scheduling for TFT-LCD color filter fab with multiple lines. The International Journal of Advanced Manufacturing Technology, 67(1-4), 101-110. doi: 10.1007/s00170-013-4757-8
Chen, K., & Ji, P. (2007). A genetic algorithm for dynamic advanced planning and scheduling (DAPS) with a frozen interval. Expert Systems with Applications, 33(4), 1004-1010.
Chen, S.H., Chang, C.K., & Kuo, C.L. (2005). Optimal scheduling in color filter manufacturing. J Chin Inst Ind Eng, 22(4), 301-308.
Chen, T.L. , Lin, J.T., & Fang, S.C. (2010). A shadow-price based heuristic for capacity planning of TFT-LCD manufacturing. J. Ind. Manage. Optim, 6(1), 209-239.
Chen, T.L., & Lu, H.C. (2012). Stochastic multi-site capacity planning of TFT-LCD manufacturing using expected shadow-price based decomposition. Applied Mathematical Modelling, 36(12), 5901-5919. doi: 10.1016/j.apm.2012.01.037
Chen, W.L., Huang, C.Y., & Lai, Y.C. (2009c). Multi-tier and multi-site collaborative production: Illustrated by a case example of TFT-LCD manufacturing. Computers & Industrial Engineering, 57(1), 61-72. doi: 10.1016/j.cie.2008.08.012
Chen, Y.Y., & Lin, J.T. (2009b). A modified particle swarm optimization for production planningproblems in the TFT Array process. Expert Systems with Applications, 36(10), 12264-12271. doi: 10.1016/j.eswa.2009.04.072
David, F., Pierreval, H., & Caux, C. (2006). Advanced planning and scheduling systems in aluminium conversion industry. International Journal of Computer Integrated Manufacturing, 19(7), 705-715.
Doh, H.H., Yu, J.M., Kim, J.S., Lee, D.H., & Nam, S.H. (2013). A priority scheduling approach for flexible job shops with multiple process plans. International Journal of Production Research, 51(12), 3748-3764. doi: 10.1080/00207543.2013.765074
Frederix, F. (2001). An extended enterprise planning methodology for the discrete manufacturing industry. European Journal of Operational Research, 129(2), 317-325.
Garey, M. R., Johnson, D. S., & Sethi, R. . (1996). The Complexity of Flow Shop and Job-Shop Scheduling.”. Mathematics of Operations Research, 1(2), 117-129.
Guo, Y., Li, W., Mileham, A.R., & Owen, G.W. (2009). Applications of particle swarm optimisation in integrated process planning and scheduling. Robotics and Computer Integrated Manufacturing, 25(2), 280-288.
Huang, H.H., Pei, W., Wu, H.H., & May, M.D. (2013). A research on problems of mixed-line production and the re-scheduling. Robotics and Computer-Integrated Manufacturing, 29(3), 64-72. doi: 10.1016/j.rcim.2012.04.014
Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). A modified genetic algorithm for distributed scheduling problems. Journal of Intelligent Manufacturing, 14(3-4), 351-362.
Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained project scheduling problem. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2627-2638. doi: 10.1007/s00170-012-4679-x
Jung, H. (2011). A fuzzy AHP–GP approach for integrated production-planning considering manufacturing partners. Expert Systems with Applications, 38(5), 5833-5840. doi: 10.1016/j.eswa.2010.11.039
Jung, H., Song, I., & Jeong, B. (2007). Genetic algorithm based integrated production planning considering manufacturing partner. International Journal of Advanced Manufacturing Technology, 32, 547-556.
Lee, Y.H. (2002). Advanced planning and scheduling with outsourcing in manufacturing supply chain. Computers & Industrial Engineering, 43(1-2), 351-374.
Li, D.C., Chang, C.C., Liu, C.W., & Chen, W.C. (2011). A new approach for manufacturing forecast problems with insufficient data: the case of TFT–LCDs. Journal of Intelligent Manufacturing, 24(2), 225-233. doi: 10.1007/s10845-011-0577-6
Orfanou, A., Busato, P., Bochtis, D. D., Edwards, G., Pavlou, D., Sørensen, C. G., & Berruto, R. (2013). Scheduling for machinery fleets in biomass multiple-field operations. Computers and Electronics in Agriculture, 94, 12-19. doi: 10.1016/j.compag.2013.03.002
Ou-Yang, C., & Hon, S.J. (2006). Developing an agent-based APS and ERP collaboration framework. Int J Adv Manuf Technol, 35(9-10), 943-967.
Ozguven, C., Ozbakir, L., & Yavuz, Y. . (2010). Mathematical Models for Job-Shop Scheduling Problems with Routing and Process Plan Flexibility. Applied Mathematical Modelling, 34(6), 1539-1548.
Park, B.J., & Choi, H.R. (2006). A Genetic Algorithm for Integration of Process Planning and Scheduling in a Job Shop. Lecture
Notes in Artificial Intelligent, 4304, 647-657.
Sauer, J. (2006). Modeling and solving multi-site scheduling problems. Planning in intelligent systems: Aspects, motivations and methods, 281-299.
Shao, X.Y., Li, X.Y., Gao, L., & Zhang, C.Y. (2009). Integration of process planning and scheduling—amodified genetic algorithm-based approach. Computers
& Operations Research, 36(6), 2082-2096.
Shen, W.M., Wang, L.H., & Hao, Q. (2006). Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,, 36(4), 563-577.
Zhong, R. Y., Li, Z., Pang, L. Y., Pan, Y., Qu, T., & Huang, G. Q. (2013). RFID-enabled real-time advanced planning and scheduling shell for production decision making. International Journal of Computer Integrated Manufacturing, 26(7), 649-662. doi: 10.1080/0951192x.2012.749532
林虹谷. (民國 91 年). 製造業即時排程與重排程基礎架構. 1-118.
邱垂慶. (民國101 年). 第八篇以啟發式演算法求解可中斷式總延遲最小化. 1-80.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw