進階搜尋


 
系統識別號 U0026-2608201416075600
論文名稱(中文) 大規模崩塌滑動面於不同深度、含水量與滑移速度條件下之摩擦特性
論文名稱(英文) The Frictional Characteristics of Deep-seated Landslide Sliding Surface under Different Depth, Water Content, and Sliding Velocity
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 丁凱元
研究生(英文) Kai-Yuan Ting
學號 L46011112
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-林慶偉
共同指導教授-董家鈞
口試委員-陳天健
中文關鍵字 大規模崩塌  低速-高速旋剪試驗  正向應力  含水量 
英文關鍵字 Large-scale landslide  Low-high rotary shear experiment  Normal stress  Water content 
學科別分類
中文摘要 本研究以台灣西南部嘉義縣阿里山鄉茶山地區之大規模崩塌為研究對象,利用高速旋剪試驗儀,模擬大規模崩塌滑動面下之摩擦特性,以期提供未來了解大規模崩塌發生機制之重要基本數據。
同時,本研究利用高精度LiDAR所產製的數值地形圖、航照圖來判釋大規模崩塌的特徵,並透過詳細的野外調查加以確認,並於不同區位之滑動面(頂部、趾部)露頭採樣,以進行不同崩塌位置之旋剪試驗。
旋剪實驗主要採1.3m/s以及10-3m/s兩個旋剪速度,分別模擬滑動面於快速運動及慢速運動下之摩擦行為,並分別改變正向應力(頂部0.3-1.0MPa、趾部1.0-1.9MPa)與含水量(0%-27%),以瞭解滑動面於不同條件下之摩擦行為變化。研究成果發現滑動面材料於高速旋剪下(1.3m/s),都呈現滑移弱化(slip-weakening)的現象,而正向應力的提升與水的參與皆會使得滑動面之尖峰摩擦係數(μ_P)、穩態摩擦係數(μ_ss)、與弱化滑移距離(D_C)下降;而在慢速旋剪下(10-3m/s),則沒有明顯的滑移弱化現象,甚至有滑移強化(slip-strengthening)的現象產生,正向應力與水的參與對於處在慢速運動下不同區位之滑動面摩擦係數會有不同的影響(上升或下降),且發現上升或下降的趨勢與滑動面材料黏土礦物含量高低呈現正相關;最後比較不同區位的滑動面於慢速旋剪與快速旋剪下之摩擦係數,發現當提高正向應力與含水量,會使得滑動面於慢速運動下之殘餘摩擦係數μ_R與轉換成快速運動所需克服之尖峰摩擦係數μ_P之間的差值降低。故本研究推論,滑動面是否能由慢速運動轉換成快速運動,滑動面之上覆正向應力與含水量為兩個關鍵的因素。
英文摘要 In this study, we use high-precision topographic LiDAR to interpret the feature of landslide-topography at Chashan area. Then we do the field work to confirm the interpretation indoor and check the activities situation of this landslide. And find the different location outcrops of sliding surface, then establish a sliding surface of the field conditions, to coordinate the conditions of velocity rotary-shear test.
Experiment mainly at two different slip rate, 1.3m/s and 10-3m/s. To simulate the friction behavior of sliding surface in fast motion and slow motion. And we change the normal stress and water content in both two slip rate. The result shows that when slip rate is at 1.3m/s, all of the friction behavior are “slip-weakening”. When slip rate is at 10-3m/s, we invent that the increase of normal stress and water content has different effects for the residual friction coefficient(μ_R), and this result has positive correlation with clay mineral content in sliding surface.
At last, we compare friction coefficient of different sliding surface at low and high velocity, we can invent that with the higher normal stress and water content, the lower difference between residual friction coefficient(μ_R) and peak friction coefficient(μ_P). And the difference may be the overcome value if a sliding surface from slow motion into fast motion. So, inference that normal stress and water content are two key factors whether a sliding surface can become fast motion or not.
論文目次 摘要 I
英文摘要 II
致謝 V
目錄 VI
表目錄 X
圖目錄 XI
一、 緒論 1
1-1 研究動機與目的 1
1-2 研究區域 2
1-3 區域地質 4
二、 前人研究 6
2-1 大規模崩塌 6
2-2 大規模崩塌的判釋 8
2-3 大規模崩塌觸發因子 12
2-4 旋剪試驗與滑動面摩擦特性 13
三、 研究方法 16
3-1 研究方法與流程 16
3-2 室內影像判釋 17
3-3 野外調查與檢核 18
3-3-1 崩塌特徵檢核 18
3-3-2 路線地質圖繪製 19
3-3-3 滑動面之調查與採樣 19
3-4 旋剪摩擦試驗 21
3-4-1 旋剪試驗儀 22
3-4-2 實驗試體製備 23
3-4-3 實驗操作流程 25
3-5 滑動面材料之粒徑與礦物成分分析 28
3-5-1 滑動面材料之粒徑分析 28
3-5-2 滑動面材料礦物成分分析 29
四、 研究成果 30
4-1 野外檢核與調查 30
4-1-1 崩塌特徵於野外檢核之結果 30
4-1-2 崩塌體岩性之調查 37
4-1-3 崩塌體構造之調查 40
4-2 崩塌滑動面之調查 45
4-2-1 滑動面之區位 45
4-2-2 滑動面之正向應力 47
4-2-3 滑動面之含水量 49
4-3 滑動面之物性分析 50
4-3-1 粒徑分析結果 50
4-3-2 礦物相與礦物比例分析結果 51
4-4 旋剪試驗結果 54
4-4-1 高速旋剪試驗中,不同含水量對摩擦係數之影響 55
4-4-2 高速旋剪試驗中,不同正向應力對摩擦係數之影響 57
4-4-3 慢速旋剪試驗中,不同含水量對摩擦係數之影響 59
4-4-4 慢速旋剪試驗中,不同正向應力對摩擦係數之影響 62
4-4-5 不同滑移速度對摩擦係數之影響I 64
4-4-6 不同滑移速度對摩擦係數之影響II 67
4-4-7 夾泥摩擦試驗與岩石-岩石接觸摩擦試驗比較結果 69
五、 綜合討論 72
5-1 室內判釋與野外工作 72
5-2 旋剪試驗與崩塌滑動面摩擦行為之比較 72
5-2-1 含水量與快速夾泥旋剪試驗 72
5-2-2 正向應力與快速夾泥旋剪試驗 74
5-2-3 含水量與慢速夾泥旋剪試驗 76
5-2-4 正向應力與慢速夾泥旋剪試驗 77
5-2-3 不同旋剪速度之夾泥摩擦試驗 79
5-2-4 夾泥摩擦試驗與岩石-岩石接觸摩擦試驗 83
六、 結論 85
參考文獻 87
附錄一 94
增加剪應力之因素 94
降低抗剪強度之因素 95
附錄二 97
土壤含水量試驗 97
附錄三 99
快速夾泥旋剪試驗結果整理表 99
慢速夾泥旋剪試驗結果整理表 100
岩石-岩石接觸摩擦試驗結果整理表 101
附錄四 102
快速旋剪試驗結果 102
慢速旋剪試驗結果 106
參考文獻 千木良雅弘(2011),大規模崩塌潛感區,科技圖書股份有限公司,共227頁。
行政院農業委員會(2004),土石流及崩塌地源頭水土保持處理工作手冊。
邵屛華、高銘健(1999),台灣地質圖說名書,五萬分之一台灣地質圖,圖幅第四十五號,經濟部中央地質調查所出版,共78頁。
陳宥任(2012),「快速滑動塊體滑動面正向應力與超額移動距離」,國立中央大學應用地質研究所碩士論文。
黃筱婷、楊哲銘、曹孟真、董家均、劉家男、王泰典、李維峰、謝有忠(2011),「地質構造與大型崩塌之關係-以阿里山公路為例」,中華水土保持學報,第四十二卷第四期,頁279-290。
劉哲欣、吳停燁、陳聯光、林聖琪、林又青、陳群樹、周憲徳(2011),「台灣地區重大岩體滑動案例之土方量分析」,中華水土保持學報,第四十一卷第三期,頁150-159。
魏倫瑋、羅佳明、鄭添耀、鄭錦桐、冀樹勇(2012),「深層崩塌之地貌特徵-以台灣南部地區為例」,中興工程,第115期,頁35-43。
Agliardi, F., Crosta, G., & Zanchi, A. (2001), “Structural constraints on deep-seated slope deformation kinematics”, Engineering Geology, 59, pp. 83-102.
Agliardi, F., Crosta, G.B., Frattini, P., & Malusà, M.G. (2013), “Giant non-catastrophic landslides and the ling-term exhumation of the European Alps”, Earth and Planetary Science Letters, 365, pp. 263-274.
Boutareaud, S., Calugaru, D.G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., & Shimamoto, T. (2008), “Clay-clast aggregates: a new textural evidence for seismic fault sliding?”, Geophysical Research Letters, Vol. 35, L05302, doi:10.1029/2007GL032554.
Boutareaud, S., Boullier, A.M., Andreani, M., Calugaru, D.G., Beck, P., Song, S.R., & Shimamoto, T. (2010), “Clay-clast aggregates in gouges: New textural evidence for seismic faulting”, Journal of Geophysical Research: Solid Earth, Vol. 115, B02408, doi:10.1029/2008JB006254.
Chigira, M., Duan, F., Yagi, H., & Furuya, T., 2004, “Using an airborne laser
scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics”, Landslides, Vol. 1, pp. 203-209.
Chigira, M., Hariyama, T., & Yamasaki, S. (2013), “Development of deep-seated gravitational slope deformation on a shale dip-slope: Observations from high-quality drill cores”, Tectonophysics, Vol. 605, pp. 104-113.
Chigira, M., and Kiho, K. (1994), “Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan”, Engineering Geology, Vol. 38, pp. 221-230.
Crosta, G.B., Frattini, P., & Agliardi, F. (2013), “Deep seated gravitational slope deformations in the European Alps”, Tectonophysics, 605, pp. 13-33.
Cruden, D.M. and Varnes, D.J. (1996), “Landslide types and processes”. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). Washington, DC, USA: National Research Council, Transportation and Research Board Special Report 247, pp 36–75.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willet, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., & Lin, J.C. (2003), “Links between erosion runoff variability and seismicity in the Taiwan orogen”, Nature, 426, pp. 648-651.
Dieterich, J.H. (1978), “Time-dependent friction and the mechanics of stick-slip”, Pure and Applied Geophysics, Vol. 116, pp. 790-806.
Dieterich, J.H. (1979), “Experimental results and constitutive equations”, Journal of Geophysical Research, Vol. 84, No. B5, pp. 2161-2168.
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006), “Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes”, Science, Vol. 311, No. 5761, pp. 647-649, doi: 10.1126/science.1121012
Dong, J.J., Lee, W.R., Lin, M.L., Huang, A.B., & Lee, Y.L. (2009), “Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake”, Tectonophysics, Vol 466, Issue 3-4, pp. 438-457.
Dramis, F., & Sorriso-Valvo, M. (1994), “Deep-seated gravitational slope defor-mations, related landslides and tectonics”, Engineering Geology, 38, pp. 231-243.
Fell, R., Glastonbury, J., & Hunter, G. (2013), “Rapid landslides: the importance of understanding mechanisms and rupture surface mechanics”, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 40, pp. 9-27. doi:10.1144/1470-9236/06-030
Ferri, F., Di Toro, G., Hirose, T., & Shimamoto, T. (2010), “Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges”, Terra Nova, Vol. 22, pp. 347-353.
Hirose, T., & Shimamoto, T. (2005), “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting”, Journal of Geophysical Research, Vol. 110, B05202, doi: 10.1029/2004JB003207.
Koukis, G., & Ziourkas, C. (1991), “Slope instability phenomena in Greece: A statistical analysis”, Bull Int Assoc Eng Geol, 43, pp. 10-160.
Lachenbruch, A.H. (1980), “Frictional heating, fluid pressure, and the resistance to fault motion”, Journal of Geophysical Research, Vol. 85, pp. 6097-6112.
Lee, S. (2005), “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data”, International Journal of Remote Sensing, Vol. 26, No. 7, pp. 1477-1491.
Lin, J.C. (1999), “Morphotectonic evolution of Taiwan”, Geomorphology and Global Tectonics, pp. 135-146.
Mase, C.W., & Smith, L. (1987), “Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault”, Journal of Geophysical Research, Vol. 92, pp. 6249-6272.
Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., & Lee, C.T. (2009), “Dynamic weakening of bedding-parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake”, The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 398-401.
Mizoguchi, K., Hirose, T., Shimamoto, T., & Fukuyama, E. (2007), “Reconstruction of seismic faulting by high-velocity friction experiments An example of the 1995 Kobe earthquake”, Geophysical Research Letters, Vol. 34, L01308, doi:10.1029/2006GL027931.
Nielsen, S., Toro, G.D., Hirose, T., & Shimamoto, T. (2008), “Frictional melt and seismic slip”, Journal of Geophysical Research, Vol. 113, B01308, doi:10.1029/2007JB005122
Niemeijer, A., Di Toro, G., Nielsen, S., & Felice, F.D. (2011), “Frictional melting of gabbro under extreme experiment conditions of normal stress, acceleration, and sliding velocity”, Journal of Geophysical Research, Vol. 116, B07404.
Noda, H., & Shimamoto, T. (2005) “Thermal pressurization and slip-weakening distance of a fault: an example of the Hanaore fault, Southwest Japan”, Bulletin of the Seismological Society of America, Vol. 95, pp. 1224-1233.
Persson, B.N.J. (2000), Sliding friction: Physical Principles and Applications (2nd), Berlin: Springer.
Popescu, M.E. (2002), “Landslide causal factors and landslide remedial options”, Keynote Lecture, Proceedings 3rd International Conference on Lnadslides, Slope Stability and Safety of Infra-Structures, Singapore, pp. 61-81.
Rice, J.R. (2006), “Heating and weakening of faults during earthquake slip”, Journal of Geophysical Research, Vol. 111, B05311, doi:10.1029/2005JB004006.
Roering, J.J., Kirchner, J.W., & Dietrich, W.E. (2004), “Characterizing structural and lithologic controls on deep-seated landsliding: Implications for toptgraphic relief and landscape evolution in the Oregon Coast Range, USA”, Geological Society of America Bulletin, Vol. 117, No. 5-6, pp. 654-668.
Shimamoto, T., & Logan, J.M. (1981), “Effects of Simulated Clay Gouge on the Sliding Behavior of Tennessee Sandstone”, Tectonophysics, 75, pp. 243-255.
Sibson, R.H. (1973), “Interactions between temperature and pore fluid pressure during an earthquake faulting and a mechanism for partial or total stress relief”, Nature, Vol. 243, pp. 66-68, doi:10.1038/physci243066a0.
Sibson, R.H. (1977), “Fault rocks and fault mechanisms”, Journal of the Geological Society of London, Vol. 133, pp. 191-213.
Soeters, R., & van Westen, C. J. (1996), Slope Instability Recognition, Analysis, and Zonation, Landslides, Investigation and Mitigation. Washington, D. C., National Academy Press, pp. 129-177.
Stini, J. (1941), “Unsere Taler wachsen zu”, Geologie und Bauwesen, 13, 71-79.
Tanikawa, W., & Shimamoto, T. (2009), “Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake”, Journal of Geophysical Research, Vol. 114, B01402, doi:10.1029/2008JB005750.
Tarolli, P., Sofia, G., and Dalla Fontana, G. (2012), “Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion”, Natural Hazards, Vol. 61, pp. 65-83.
Togo, T., Shimamoto, T., Ma, S., & Hirose, T. (2011), “High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake”, Earthquake Science, Vol. 24, Issue 3, pp. 267-281.
Tsutsumi, A., & Shimamoto, T. (1996), “Frictional properties of monzodiorite and gabbro during seismogenic fault motion”, Geological Society of Japan. Vol. 102, pp. 240-248.
Varnes, D.J. (1978), “Slope movement types and processes, Landslides, Analysis and Control”, Spec. Rep., 176, Proceedings of the National Academy of Science, Washington D. C., pp. 11-35.
Wibberley, C.A.J., and Shimamoto, T. (2005), “Earthquake slip weakening and asperities explained by thermal pressurization”, Nature, Vol. 436, pp. 689-692.
Wu, C.H., Chen, S.C., & Chou, H.T. (2011), “Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in Kaoping Watershed, Taiwan”, Engineering Geology, Vol. 123, pp. 13-21.
Wu, F.T. (1978), Pageoph: Mineralogy and physical Nature of Clay Gouge. Vol. 116, Birkhäuser Verlag, Basel. pp. 655-689.
Yano, K., Shimamoto, T., Oohashi, K., Dong, J.J., & Lee, C.T. (2009), “Ultra-low friction of shale and clayey fault gouge at high velocities: implication for Jiufengershan landslide induced by 1999 Chi-Chi earthquake”, The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 402-406.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw