進階搜尋


下載電子全文  
系統識別號 U0026-2608201410335900
論文名稱(中文) 彈性波在含兩相非混合流體的孔隙介質中傳波特性之研究
論文名稱(英文) A numerical study of characteristics of elastic wave propagation and attenuation in a porous medium containing two immiscible fluids
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩士在職專班
系所名稱(英) Department of Hydraulics & Ocean Engineering (on the job class)
學年度 102
學期 2
出版年 103
研究生(中文) 曾國源
研究生(英文) Kuo-Yuan Tseng
學號 n87991080
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-羅偉誠
口試委員-陳主惠
口試委員-譚義績
口試委員-詹錢登
口試委員-葉昭龍
中文關鍵字 孔彈性理論  彈性波  傳波速度  衰退係數 
英文關鍵字 poroelasticity theory  elastic wave  wave speed  attenuation coefficient 
學科別分類
中文摘要 本研究利用Lo et al. (2005)所建立的孔彈性理論(The theory of poroelasticity)模式,模擬彈性波在孔隙介質中(哥倫比亞砂質壤土及林肯砂土)含有非混合、可壓縮、具有黏滯性的兩相流系統之傳波特性的差異。相較於前人研究,多半將水視為潤濕流體,因此,本研究除了模擬空氣-水及油-水兩相流系統,更將使用油做為潤濕流體的空氣-油系統,進而觀察流體特性對彈性波傳波特性的影響。
結果顯示三種彈性波之速度大小順序分別稱為 P1、P2和P3波,且P1波傳波速度大小與土壤孔隙率有關,土壤孔隙率越大P1波傳波速度則越小,P1波波速不隨震盪頻率而變,代表傳波速度與震盪頻率無關。由模擬結果得知P1波的傳波衰退係數,與土壤特性有密切關係之外,且約與震盪頻率平方成正比。
依照模擬結果顯示,震盪頻率愈大,P2波的傳波速度愈大,兩者均大約與傳波頻率的平方根成正比。且得知土壤之P2波速越大,P2波速之衰退係數越小;由模擬數值P3波結果,當S2 =0和1時,其波速皆等於零,因P3波是由於毛細壓力變動所產生。與Lo et al., (2005)模擬的結果一致,因為沒有第二種流體就沒有存在P3波速;P3波在空氣-水、油-水及空氣-油三種兩相流體組合之傳波速度,P3波波速在油-水系統其值為最小,且是三種系統中是最不容易觀察。
英文摘要 The study of the behavior of elastic wave propagation and attenuation through a fluid-bearing porous medium has been a crucial theme in recent years. In this study, we applied the theory of poroelasticity derived by Lo et al. (2005) to analyze the characteristics of dilatational waves through an elastic porous medium permeated by two immiscible, compressible, and viscous fluids. According to the previous studies, the main purpose of this study is the porous fluids play an important role on the behavior of wave propagation. Therefore, to examine the impact of relative fluid saturation and wave excitation frequency on elastic wave propagation in unconsolidated porous media.
In the current study, two soil textures (Columbia fine sandy loam and Lincoln sand) containing one of an air-water, oil-water or air-oil mixture as illustrative examples under three wave excitation frequencies (10Hz, 500Hz and 1kHz) was selected. The simulation results show that the greater the wave excitation frequency is, the greater P2 wave speed is which is approximately proportional to the square root of the wave excitation frequency. When wetting fluid saturation is equal to 0 and 1, the speed of P3 wave is equal to 0, because the P3 wave is only presented in a two fluid system. Among the three fluid mixtures, the speed of P3 wave is found to be smallest in the oil-water system which is not easy to observe.
論文目次 摘要 I
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
符號說明 XI
第一章 緖論 1
1.1 文獻回顧 1
1.2 研究動機 3
1.3 本文架構 3
第二章 理論模式 5
2.1 控制方程式 5
2.2 應力-應變關係 7
2.3 彈性波在包含兩個流體之彈性孔隙介質之傳遞及衰減模式 9
2.4 波傳頻率方程式 10
第三章 數值模擬 15
3.1 數值模擬所需之相關參數 15
3.1.1 保水曲線 (water retention curve) 15
3.1.2 水力傳導函數 (Hydraulic conductivity function) 16
3.1.3 慣性互制參數 (Inertial coupling parameters) 17
3.1.4 黏性互制參數 (Viscous coupling parameters) 18
3.2 參數數值模擬結果 18
3.2.1 P1波傳波特性 21
3.2.2 P2波傳波特性 22
3.2.3 P3波傳波特性 23
第四章 結論與建議. 67
4.1 結論 67
4.2 建議 67
參考文獻 69
參考文獻 葉昭龍,「彈性波在飽和及未飽和土壤中傳波特性之影響評估」,國立成功大學水利及海洋工程學系碩士論文, 2006。
李文豐,「慣性及黏滯互制效應對彈性波在兩種不可混合流體的孔隙介質中之影響評估」, 國立成功大學水利及海洋工程學系碩士論文,2007。
李哲瑋,「毛細張力變化對膨脹波在未飽和孔彈性介質中傳波特性之影響評估」, 國立成功大學水利及海洋工程學系碩士論文, 2008。
黃鈺涵,「含兩相非混合、可壓縮並具有黏滯性流體之孔彈性介質於固定載重下壓密理論與數值研究」,國立成功大學水利及海洋工程學系博士文,2012。
Beresnev, I. A., and P. A. Johnson, Elastic-wave timulation of oil production: a review of methods and results, Geophysics, Vol. 59, no. 6, pp. 1000-1017, 1994.
Berryman, J. G., Confirmation of Biot’s theory, Applied Physics Letters, Vol. 37, no.4, pp. 382-384, 1980.
Berryman, J. G., Effective conductivity by fluid analogy for a porous insulator filled with a conductor, Physical Review B, Vol. 27, no. 12, pp. 7789-7792, 1983.
Berryman, J. G., L. Thigpen, and R. C. Y. Chin, Bulk elastic wave propagation in partially saturated porous solids, Journal of the Acoustical Society of America,Vol. 84, no. 1, pp. 360-373, 1988.
Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, Vol. 28, no.2, pp. 168-178, 1956a.
Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid,II. Higher frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 179-191, 1956b.
Biot, M. A., and D. G. Willis, The elastic coefficient of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, pp. 594-601, 1957.
Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, Vol. 33, no. 4, pp. 1482-1498, 1962.
Brooks, R. H., and A. T. Corey, Hydraulic properties of porous media, Hydrology Paper 3, Civ. Eng. Dep., Colo. State Univ., Fort Collins, 1964.
Brutsaert, W., The propagation of elastic waves in unconsolidated unsaturated granular mediums, Journal of Geophysical Research, Vol. 69, no. 2, pp. 243-257,1964.
Burridge, R., and Keller, J. B., Poroelasticity equations derived from microstructure, Journal of the Acoustical Society of America, Vol. 70, no. 4, pp. 1140-1146, 1981.
Burdine, N. T., Relative permeability calculations from pore size distribution data, Journal of Petroleum Technology, 5, pp. 71-77, 1953.
Chen, J., J. W. Hopmans, and M. E. Grismer, Parameter estimation of two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources, 22(5), pp. 479-493, 1999.
Chen, Z. H., Consolidation theory of unsaturated soil based on the theory of mixture, Applied Mathematics and Mechanics, 14, pp. 721-733, 1993.
Cosenza, P., M. Ghoreychi, G. de Marsily, G. Vasseur, and S. Violette, Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient, Water Resources Research, Vol. 38(10), 1207, doi:10.1029/2001 WR001201, 2002.
Garg, S. K., and Nayfeh A.H., Compressional wave propagation in liquid and/or gas saturated elastic porous media, Journal of Applied Physics, Vol. 60, no. 9, pp. 3045-3055, 1986.
Ghaboussi, J. and U. S. Dikmen, “Liquefaction Analysis of Horizontally Layered Sands”, J. Geotech. Eng. Div. ASCE, Vol. 104, No. GT3, pp. 341-357, 1978.
Lo, W. C., Sposito G.., and Majer E., Immiscible two-phase fluid flows in deformableporous media, Advances in Water Resources (Invited, Special Issue - 25 Years ofAdvances in Water Resources), 25 (8-12), pp. 1105-1117, 2002.
Lo, W. C., Sposito G.., and Majer E., Wave propagation through elastic porous mediacontaining two immiscible fluids, Water Resources Research, Vol.41, W02025, 2005.
Lo, W. C., Decoupling of the coupled poroelastic equations for quasistatic flow in deformable porous media containing two immiscible fluids, Advances in Water Resources, 29 (12), pp. 1893-1900, 2006.
Lo, W. C., C. L. Yeh, and C. T. Tsai, Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions, Journal of Hydrology, 338, pp. 273-284, 2007.
Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, 12 (3), pp. 513-522, 1976.
Plona, T. J., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Applied Physics Letters, Vol. 36, no. 4, pp. 259-261, 1980.
Santos, J. E., Corbero, J. M. and Douglas, J., Static and dynamic behavior of a poroussolid saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1428-1438, 1990a.
Santos, J. E., Douglas, J., Corbero, J., and Lovera, O. M., A model for wave propagation in a porous medium saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1439-1448, 1990b.
Santos, J. E., Ravazzoli, C. L., Gauzellino, P. M., Carcione, J. M., and Cavallini, F., Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids. Numerical evidence of a second slow wave, Journal of Computational Acoustics,Vol. 12, no. 1, pp. 1-21, 2004.
Schrefler, B. A., and X. Y. Zhan, A fully coupled model for water-flow and air-flow in deformable porous-media, Water Resources Research, Vol. 29, no. 1, pp. 155-167, 1991.
Tuncay, K., and Corapcioglu M. Y., Body waves in poroelastic media saturated by two immiscible fluids, Journal of Geophysical Research, Vol. 101, No. B11, pp. 25149-25159, 1996.
van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44,no. 5, pp. 892-898, 1980.
Wei, C., and Muraleetharan K. K., A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity, International Journal of Engineering Science, Vol. 40, pp. 1807-1833, 2002
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw