進階搜尋


下載電子全文  
系統識別號 U0026-2608201320414800
論文名稱(中文) 過度拉伸所造成之肌肉損傷其超音波影像特性與生物機械特性之表現
論文名稱(英文) Ultrasonographic and biomechanical properties in muscle injury after over-stretch
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 林詩萍
研究生(英文) Shih-Ping Lin
學號 P86001142
學位類別 碩士
語文別 中文
論文頁數 53頁
口試委員 指導教授-吳佳慶
指導教授-蘇方慶
口試委員-周一鳴
口試委員-張志涵
口試委員-王士豪
中文關鍵字 骨骼肌拉傷  高頻超音波  灰階值  Nakagami參數  膠原蛋白纖維 
英文關鍵字 muscle strain injury  high-frequency ultrasound  echogenicity  Nakagami parameter  collagen fiber 
學科別分類
中文摘要 肌肉骨骼系統對人類的身體活動扮演重要角色,其主要負責力量之產生及荷重。而機械特性係指材料受力時之表現,故骨骼肌肌肉組織之機械特性亦為評估其功能的指標之一。因此,比起現行使用於臨床評估肌肉拉傷之程度的主觀方法,從機械特性著手進行評估則更能提供精確且可量化的資訊用於偵測骨骼肌肉損傷程度之想法亦被提出,但礙於現行之肌肉之機械特性於生物體內量測技術之限制,因此如何利用非侵入式之方式測得骨骼肌肉之機械特性,且適用於偵測肌肉拉傷後機械特性改變之情形為發展此評估方式首須克服之處。超音波影像系統由於其非侵入性、方便且易於操作之特性,故為一最常用於臨床之診斷技術。此外,由於超音波訊號之機械波的傳導、反射及散射之能力可用於表現組織之物理特性,所以此技術現今亦被發展用於量測組織彈性或硬度等機械特性。因此,此篇研究目的為透過超音波非侵入式之影像擷取方式,藉由計算不同之超音波參數之結果與骨骼肌肉之被動拉伸機械特性之量測對照,以期發展一客觀之骨骼肌肉損傷評量系統。
本實驗採用小鼠之腓腸肌之肌肉-肌腱組織進行體外被動拉伸測試之壓力-鬆弛現象測量,同一小鼠之左側直接用於測量,右側之組織則先經過40% 應變量之過度拉伸5分鐘後再進行測量。一開始將長度固定於原始長度並每次調整應變量10%直至達40%,於機械特性測試時亦同時利用高頻超音波系統搭配30MHz之探頭進行超音波訊號之截取。利用超音波探頭於Z軸之深度改變並拼接聚焦區之訊號以降低待測組織之影像失真情形,超音波訊號之擷取方向包含截面及縱切面,輸出之超音波影像分別以灰階值及 Nakagami 參數表示。機械特性之測試結果以應力鬆弛現象達一穩定狀態後之平均荷重或壓力表示,而超音波參數則計算於影像中固定四個區域之平均灰階值及Nakagami參數,再利用這些數據進一步分析機械特性與超音波參數之關係。此外,為了分析肌肉組織之結構改變與力學特形及超音波參數之相關性,組織學研究亦使用於本研究於了解肌肉纖維及膠原蛋白纖維之表現。
實驗結果顯示,不論在正常或受傷之組織其力學特性與超音波之灰階值表現之間有高度的相關,灰階值亦可表現出在受傷組織中荷重下降的現象。而Nakagami參數與力學表現有極高的相關性除了在受傷組織中的截面影像,截面影像之Nakagami並不如其他組般的隨應力上升而增加,反而與分析區域內之散射子之減少有中度的相關;散射子之數量下降增加造成Nakagami參數之減低。於觀察組織學研究結果,肌肉纖維之密度亦與灰階值及Nakagami參數有相關,亦觀察到肌肉組織內之膠原蛋白纖維斷裂,並造成機械特性之下降及超音波散射子之密度改變。
此研究建立一機械特性與超音波參數之關連性於正常及受傷之骨骼肌肉組織, 並進一步的將此結果與組織結構改變進行比較,並透過以上之過程檢定超音波特性可為一有效用於反應骨骼肌肉組織機械特性之方式。於未來,可進一步的將此系統應用臨床進行客觀且精確的非侵入式骨骼肌肉組織特性診斷行為。
英文摘要 Musculoskeletal system plays an important role in body movement, and it was responsible to force generation and loading. The mechanical properties of material were indicated to the response during loading, and these properties were often seen as the key factors to evaluate the functions of skeletal muscle tissue. Hence, Comparing the subjective method in clinical to evaluate the strain injury in skeletal muscle tissue, it is better to provide the accuracy and objective information about strain injury by detecting the mechanical behavior. But, there are some limitations in this kind of evaluation due to the mechanical properties were difficult to measure in vivo. Therefore, how to measure the mechanical force noninvasively is an important issue in developing the technique. The ultrasonic imaging system was one of common tool for diagnosis used in clinical because the advantages such as noninvasive and convenient. Besides, the wave transmission, reflection, and scattering of ultrasound can be used to reflect the physical parameters in the tissue, and as well advanced to help evaluate the biomechanical properties, such as elastic or stiffness. The objectives of this study were to investigate the correlation between ultrasonic parameters from ultrasonographys and mechanical behavior of muscle tissue, and developed an objective method to help assess the injury level in strain injury muscle.
The gastrocnemius muscle-tendon units from mice were use to proceed the stress-relaxation tests, at the same time, the images were recorded by high-frequency ultrasound with 30 MHz transducer. The left tissue was tested directly, and right one was tested post 40 % strain overstretch 5 minutes. To modulate the length of muscle to measure the static stress, from original length to 40% strain with the 10% increments each time. The way of scanning was the brightness/depth (B/D) mode, which can be used to reduce the adverse effects of beam diffraction on the image resolution. The ultrasonic signals were recorded in cross section and longitudinal section, and the results of ultrasonic signals were displayed as ultrasonography in types of echogenicity and Nakagami parameter. The results of mechanical force were showed as the mean value of stress or load in static state, and the ultrasonic parameters were expressed as the mean value from four stationary areas, and then, according to these results, the correlation coefficient between them was analyzed. Moreover, the histological study was also used to evaluate the appearance changes of muscle and collagen fibers to realize the relationship between the mechanical and ultrasonic properties.
The results showed that the strong correlation between echogenicity and mechanical force in both normal and damaged tissue, and the echogenicity also could reflect the phenomenon, decreased load in damaged tissue. And there was a strong correlation between Nakagami and Mechanical force except the results from ultrasonography of damaged tissue in the mode of cross section. The Nakagami parameter in damaged ultrasonography of cross image didn’t correlate to stress increase, but related to the lost scatterer in the region of interest moderately. The results of histographys showed the density of muscle fibers related to echogenicity and Nakagami, and the collagen fiber in the muscle tissue could be observed the rupture in damaged tissue to result in lowering the mechanical behavior and concentration of scatterer.
In conclusion, this study established a relationship between mechanical and ultrasonic properties which can be applied in normal and injured tissue. Through correlating the different factors in ultrasonography, mechanical behavior and microstructure changes to verify that the ultrasonic can be an appropriate method to reflect the biomechanical properties in skeletal muscular tissue. In the future, this system can be effectively developed as a noninvasive and accurate method to diagnose the muscle injury applied in clinical.
論文目次 中文摘要 I
ABSTRACT III
CONTENT VI
Figure Content VII
Table Content X
INTRODUCTION 1
Skeletal muscular structure 1
Mechanical properties of skeletal muscular tissue 3
Strain muscle injury 6
High frequency ultrasound 8
Mechanical properties detected by ultrasound 9
SPECIFIC AIMS 12
MATERIALS and METHODS 13
Animals 13
Muscles preparation 13
Mechanical testing of muscle tissue 13
High frequency ultrasound 15
Region of interest quantification 17
Biomechanical Properties for normal and injured muscles 19
Histological Analysis 20
RESULTS 25
Over-stretching changed the mechanical properties of muscle 25
The changes of ultrasonographic parameters in post-damaged muscle 26
Correlation of ultrasonic characteristics with biomechanical properties in normal and injured muscles 27
Structure changes in muscle fibers during different strains 34
Immediate follow over-stretching did not induce inflammatory response in the injured muscle 38
To distinguish the factor cause different Nakagami outcomes in post-damaged muscle between cross and longitudinal sections 39
DISCUSSION 42
CONCLUSION 49
REFERENCE 51

參考文獻 REFERENCE

Armfield, D. R., D. H. Kim, et al. (2006). "Sports-related muscle injury in the lower extremity." Clin Sports Med 25(4): 803-842.
Baskin, R. J. and P. Paolini (1964). "Volume Change Accompanying Passive Stretch of Frog Muscle." Nature 204: 694-695.
Bensamoun, S., L. Stevens, et al. (2006). "Macroscopic-microscopic characterization of the passive mechanical properties in rat soleus muscle." J Biomech 39(3): 568-578.
Chan, O., A. Del Buono, et al. (2012). "Acute muscle strain injuries: a proposed new classification system." Knee Surg Sports Traumatol Arthrosc 20(11): 2356-2362.
Clancy, N. T., G. E. Nilsson, et al. (2010). "A new device for assessing changes in skin viscoelasticity using indentation and optical measurement." Skin Res Technol 16(2): 210-228.
Duenwald-Kuehl, S., J. Kondratko, et al. (2012). "Damage Mechanics of Porcine Flexor Tendon: Mechanical Evaluation and Modeling." Ann Biomed Eng 40(8): 1692-1707.
Duenwald-Kuehl, S., R. Lakes, et al. (2012). "Strain-induced damage reduces echo intensity changes in tendon during loading." J Biomech 45(9): 1607-1611.
Duenwald, S., H. Kobayashi, et al. (2011). "Ultrasound echo is related to stress and strain in tendon." J Biomech 44(3): 424-429.
Fung, Y. C. (1993). Biomechanics : mechanical properties of living tissues. New York, Springer-Verlag.
Garrett, W. E., Jr., P. K. Nikolaou, et al. (1988). "The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension." Am J Sports Med 16(1): 7-12.
Gillies, A. R. and R. L. Lieber (2011). "Structure and function of the skeletal muscle extracellular matrix." Muscle Nerve 44(3): 318-331.
Gillies, A. R., L. R. Smith, et al. (2011). "Method for decellularizing skeletal muscle without detergents or proteolytic enzymes." Tissue Eng Part C Methods 17(4): 383-389.
Heimdal, A., A. Stoylen, et al. (1998). "Real-time strain rate imaging of the left ventricle by ultrasound." J Am Soc Echocardiogr 11(11): 1013-1019.
Hete, B. and K. K. Shung (1993). "Scattering of ultrasound from skeletal muscle tissue." IEEE Trans Ultrason Ferroelectr Freq Control 40(4): 354-365.
Ho, M. C., J. J. Lin, et al. (2012). "Using ultrasound Nakagami imaging to assess liver fibrosis in rats." Ultrasonics 52(2): 215-222.
Itoh, A., E. Ueno, et al. (2006). "Breast disease: clinical application of US elastography for diagnosis." Radiology 239(2): 341-350.
Kovanen, V., H. Suominen, et al. (1984). "Collagen of slow twitch and fast twitch muscle fibres in different types of rat skeletal muscle." Eur J Appl Physiol Occup Physiol 52(2): 235-242.
Kovanen, V., H. Suominen, et al. (1984). "Mechanical properties of fast and slow skeletal muscle with special reference to collagen and endurance training." J Biomech 17(10): 725-735.
Light, N. and A. E. Champion (1984). "Characterization of muscle epimysium, perimysium and endomysium collagens." Biochem J 219(3): 1017-1026.
Lin, Y. H., C. C. Huang, et al. (2011). "Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model." Phys Med Biol 56(3): 757-773.
Meyer, G. A. and R. L. Lieber (2011). "Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles." J Biomech 44(4): 771-773.
Meyer, G. A., A. D. McCulloch, et al. (2011). "A nonlinear model of passive muscle viscosity." J Biomech Eng 133(9): 091007.
Mohana Shankar, P. (2000). "A general statistical model for ultrasonic backscattering from tissues." IEEE Trans Ultrason Ferroelectr Freq Control 47(3): 727-736.
Nikolaou, P. K., B. L. Macdonald, et al. (1987). "Biomechanical and histological evaluation of muscle after controlled strain injury." Am J Sports Med 15(1): 9-14.
Noonan, T. J. and W. E. Garrett, Jr. (1999). "Muscle strain injury: diagnosis and treatment." J Am Acad Orthop Surg 7(4): 262-269.
Ophir, J. (1996). "Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo." European Journal of Ultrasound 3(1): 49.
Orchard, J. (2002). "Biomechanics of muscle strain injury." New Zealand Journal of Sports Medicine 30(4): 90-97.
Prado, L. G., I. Makarenko, et al. (2005). "Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles." J Gen Physiol 126(5): 461-480.
Purslow, P. P. (2002). "The structure and functional significance of variations in the connective tissue within muscle." Comp Biochem Physiol A Mol Integr Physiol 133(4): 947-966.
Purslow, P. P., T. J. Wess, et al. (1998). "Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues." J Exp Biol 201(Pt 1): 135-142.
Ryan, A. J. (1969). "Quadriceps strain, rupture and charlie horse." Med Sci Sports Exerc 1(2): 106.
Saha, R. K. and M. C. Kolios (2011). "Effects of cell spatial organization and size distribution on ultrasound backscattering." IEEE Trans Ultrason Ferroelectr Freq Control 58(10): 2118-2131.
Schmalbruch, H. (1974). "The sarcolemma of skeletal muscle fibres as demonstrated by a replica technique." Cell Tissue Res 150(3): 377-387.
Shung, K. K. (2006). Diagnostic ultrasound: Imaging and blood flow measurements, CRC.
Sun, J. S., Y. S. Hang, et al. (1998). "Morphological changes of the triceps surae muscle-tendon unit during passive extension: an in vivo rabbit model." Clin Biomech (Bristol, Avon) 13(8): 634-640.
Taylor, D. C., J. D. Dalton, et al. (1990). "Viscoelastic properties of muscle-tendon units." Am J Sports Med 18(3): 300-309.
Tsui, P. H., C. C. Huang, et al. (2007). "Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro." Phys Med Biol 52(21): 6413-6425.
Tsui, P. H. and S. H. Wang (2004). "The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration." Ultrasound in Medicine and Biology 30(10): 1345-1353.
Twersky, V. (1987). "Low-Frequency Scattering by Correlated Distributions of Randomly Oriented Particles." Journal of the Acoustical Society of America 81(5): 1609-1618.
Vanderby, R. (2005). "New strain energy function for acoustoelastic analysis of dilatational waves in nearly incompressible, hyper-elastic materials." Journal of Applied Mechanics 72(6): 843.
Wang, C. Y. and K. K. Shung (1998). "Variation in ultrasonic backscattering from skeletal muscle during passive stretching." IEEE Trans Ultrason Ferroelectr Freq Control 45(2): 504-510.
Ward, S. R., A. Tomiya, et al. (2009). "Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer." J Biomech 42(10): 1384-1389.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw