進階搜尋


下載電子全文  
系統識別號 U0026-2608201115522600
論文名稱(中文) 新型壓電振動子之研發及其超音波馬達設計應用
論文名稱(英文) Development of a Novel Piezoelectric Vibrator and its Applications on Ultrasonic Motor Design
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 蕭仕偉
研究生(英文) Shih-Wei Hsiao
學號 n1893112
學位類別 博士
語文別 中文
論文頁數 89頁
口試委員 召集委員-陳朝光
指導教授-蔡明祺
口試委員-陳國聲
口試委員-鄭銘揚
口試委員-蔡孟勳
口試委員-林博正
中文關鍵字 超音波馬達  壓電振動子  球型馬達  主動式滑軌 
英文關鍵字 ultrasonic motor  piezoelectric vibrator  spherical motor  active linear guide 
學科別分類
中文摘要 近年馬達應用需求朝向微小化、精密化、多自由度化與低噪音之設計,傳統電磁驅動馬達受限於致動原理,結構體積不易縮小。超音波馬達以獨特的驅動方式,比傳統電磁馬達,具有響應快速、低速大啟動扭矩且無聲的特點,適合應用於機器人關節、精密定位平台、醫學工程應用、微小組裝技術等領域,深具未來發展潛力。本論文提出一創新型壓電振動子結構,最大的特色在於採用垂直的電極設置,於振動子內產生非對稱且不均勻的電場分佈,產生特殊振動模態推動物體往復運動。實驗結果顯示此新型振動子有別於目前習知的超音波馬達振動子,具有較高的功率密度,且體積小、結構簡單,為一創新之設計,可彈性裝設應用於旋轉、線型、平面與球面等各種不同形式的超音波馬達設計。且具有單相驅動的特色,只要一組輸入訊號,即可變換馬達行進方向,簡化了驅動電路的複雜度,亦可採用多相驅動提升超音波馬達性能。
英文摘要 Recent developments in motor design have been directed towards miniaturization, multiDOF and low-noise operation in response to the market demand. Conventional electromagnetic motors are limited by the working principle that creates difficulties in reducing their size and maintaining their performance at the same time. Ultrasonic motors, on the other hand, have benefits that can address these problems, such as quick response, high torque at low speeds and quiet operation, making them suitable for applications such as robot joints, positioning stages, medical devices and micro-assembly systems etc.
This dissertation presents a novel structure of piezoelectric vibrator for the design application of ultrasonic motors. The main feature of the vibrator is to adopt perpendicular electrodes for which asymmetrical and non-uniform electric fields are developed in the vibrator and a special vibration mode can be generated to push the rotor/slider. Experimental results show that the novel vibrator design has higher power density than other vibrators and can be easily installed to rotary, linear, planar and spherical ultrasonic motors because of its compact size and simple structure. Moreover, the novel vibrator can be driven with a single-phase voltage so that the design of driving circuit can be simplified significantly. The performance of ultrasonic motors can be further improved using a multiphase drive.
論文目次 摘 要 III
Abstract IV
誌 謝 V
目 錄 VI
表 目 錄 VIII
圖 目 錄 IX

第一章 緒 論 1
1.1 研究動機與目的 1
1.2 文獻回顧 6
1.3 論文架構 18
第二章 超音波馬達振動子設計 19
2.1 多相驅動振動子 19
2.2 單相驅動振動子 26
第三章 非對稱電場驅動之壓電振動子設計 30
3.1 振動子結構與致動原理 30
3.2 振動子尺寸分析 36
3.3 振動子表面振幅量測 43
第四章 線型超音波馬達 48
4.1 線型超音波馬達結構 48
4.2 馬達性能量測系統 50
4.3 實驗結果 54
第五章 各種超音波馬達應用 62
5.1 主動式線性滑軌 62
5.2 旋轉超音波馬達 67
5.3 平面與球面超音波馬達 73
第六章 結論與建議 79
6.1 結論 79
6.2 未來研究建議 81
參考文獻 82
參考文獻 [1] S. Ueha, and Y. Tomikawa, Ultrasonic Motors: Theory and Applications, Clarendon Press, 1993.
[2] J. Rouvinen and P. Kauhanen, “Requirements for camera phone actuators,” 10th Internal Conference on New Actuators, Germany, 2006.
[3] T. Cimprich, F. Kaegi, W. Driesen, A. Ferreira, and J. M. Breguet, “Ultrasonic monolithic piezoelectric multi-DOF Actuators for mobile microrobots,” 10th Internal Conference on New Actuators, 2006.
[4] K. D. Müller, H. Marth, P. Pertsch, R. Glöss, and X. Zhao, “Piezo-based, long-travel actuators for special environmental conditions,” 10th Internal Conference on New Actuators, Germany, 2006.
[5] M. F. Six, R. Le Letty, P. Coste, and F. Claeyssen, “Rotating step by step piezomotor for nanopositioning and space applications,” 10th Internal Conference on New Actuators, Germany, 2006.
[6] J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, “A piezoelectric linear actuator formed from a multitude of bimorphs,” Sensors and Actuators, vol. 109, pp. 242-251, 2004.
[7] C. H. Yun, T. Ishii, K. Nakamura, S. Ueha, and K. Akashi, “A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped langevin type transducer,” Japanese Journal of Applied Physics, vol. 40, pp. 3773-3776, 2001.
[8] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, 1993.
[9] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, 1997.
[10] A. Williams and W. Brown, “Piezoelectric motor,” US-patent: 2439499, 1942.
[11] H. V. Barth, “Ultrasonic driven motor,” IBM Technological Disclosure Bulletin 16, No. 7, p. 2263, 1973.
[12] P. E. Vasiliev, “Vibration motor control,” UK-patent: GB2020857 A, 1979.
[13] A. Kumada, “A piezoelectric ultrasonic motor,” Japanese Journal of Applied Physics, vol. 24, pp. 739-741, 1985.
[14] K. Uchino, “Piezoelectric ultrasonic motors: overview,” Smart Materials and Structures, vol. 7, pp. 273-285, 1997.
[15] J. Toyoda, and K. Murano, “A small-size linear motor,” Japanese Journal of Applied Physics, vol. 30, pp. 2274-2276, 1991.
[16] A. Iino, K. Suzuki, M. Kasuga, M. Suzuki, and T. Yamanaka, “Development of a self-oscillating ultrasonic micro-motor and its application to a watch_SEIKO,” Ultrasonics, vol. 38, pp.54-59, 2000.
[17] A. Ferreira, P. Minotti, and P. Le Moal, “New multi-degree of freedom piezoelectric micromotors for micromanipulator applications,” IEEE ultrasonics symposium, pp. 417-422, 1995.
[18] T. Shigeki, S. Shigeru and G. Zhang, “Multi degree of freedom spherical ultrasonic motor,” IEEE international conference on robots and automation, pp. 2935–2940, 1995.
[19] T. Amano, Takaakiishii, K. Nakamura, and S. Ueha, “An ultrasonic actuator with multi-degree of freedom using bending and longitudinal vibration of a single stator,” IEEE ultrasonics symposium, pp. 667–670, 1998.
[20] M. Moroney, R. M. White and R. T. Howe, “Ultrasonic micro-motors,” IEEE ultrasonics symposium, pp. 745-748, 1989.
[21] K. Uchino, “Piezoelectric motors for camera modules,” 11th Internal Conference on New Actuators, pp. 157-160, 2008.
[22] T. Mashimo, S. Toyama, and H. Ishida, “Design and implementation of spherical ultrasonic motor,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, pp. 2514-2521, 2009.
[23] P. Helin, V. Sadaune, C. Druon, and J. B. Tritsch, “A mechanical model for energy transfer in linear ultrasonic micromotors using Lamb and Rayleigh waves,” IEEE /ASME transactions on mechatronics, vol. 3, pp.3-8, 1998.
[24] M. Tanabe, S. Xie, N. Tagawa, and T. Moriya, “Driving the coiled stator ultrasonic motor using traveling wave generated by superimposing two standing waves,” Japanese Journal of Applied Physics, vol. 47, pp. 4262-4264, 2008.
[25] M. K. Kurosawa, O. Kodaira, Y. Tsuchitoi, and T. Higuchi, "Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 45, pp. 1188-1195, 1998.
[26] K. Asumi, R. Fukunaga, T. Fujimura, and M. K. Kurosawa, “Miniaturization of a V-shape transducer ultrasonic motor,” Japanese Journal of Applied Physics, vol. 48, pp. 07GM02, 2009.
[27] J. R. Friend, J. Satonobu, K. Nakamura, S. Ueha, and D. S. Stutts, "A single-element tuning fork piezoelectric linear actuator," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, pp. 179-186, 2003.
[28] Cedrat & Cedrat Technologies http://cedrat.com/.
[29] M. Aoyagi, Y. Tomikawa, and T. Takano, “Ultrasonic motors using longitudinal and bending multimode vibrators with mode-coupling by externally additional asymmetry or internal nonlinearity,” Japanese Journal of Applied Physics, vol. 31, pp. 3077-3080, 1992.
[30] N. W. Hagood IV and A. J. McFarland, “Modeling of a piezoelectric rotary ultrasonic motor,” IEEE Transaction on Sonics and Ultrasonics, Ferroelectrics, and Frequency control, vol. 42, pp. 210-224, 1995.
[31] K. Spanner and B. Koc, “An overview of piezoelectric motors,” 12th Internal Conference on New Actuators, pp. 167-176, 2010.
[32] D. A. Henderson, Q. Xu, and D. Piazza, “Continuous auto focus for next generation phone cameras,” 12th Internal Conference on New Actuators, pp. 202-205, 2010.
[33] Y. Tomikawa, T. Takano, and H. Umeda, “Thin rotary and linear ultrasonic motors using a double-mode piezoelectric vibrator of the first longitudinal and second bending modes,” Japanese Journal of Applied Physics, vol. 31, pp. 3073-3076, 1992.
[34] E. Vyshnevskyy, S. Kovalev, and W. Wischnewskiy, "A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, pp. 2047-2053, 2005.
[35] M. Aoyagi and Y. Tomikawa, "Ultrasonic motor based on coupled longitudinal-bending vibrations of a diagonally symmetric piezoelectric ceramic plate," Electronics and Communications in Japan Part Ii-Electronics, vol. 79, pp. 60-67, 1996.
[36] K. Nakamura, M. Kurosawa, H. Kurebayashi and S. Ueha, "An estimation of load characteristics of an ultrasonic motor by measuring transient responses," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 38, pp. 481-485, 1991.
[37] S. W. Hsiao and M. C. Tsai, "Single-phase drive linear ultrasonic motor with perpendicular electrode vibrator," Japanese Journal of Applied Physics, vol. 49, pp. 024201, 2010.
[38] Y. Okamoto and R. Yoshida, "Development of linear actuators using piezoelectric elements," Electronics and Communications in Japan Part Iii-Fundamental Electronic Science, vol. 81, pp. 11-17, 1998.
[39] S. He, W. Chen, X. Tao, and Z. Chen, "Standing wave bi-directional linearly moving ultrasonic motor," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 45, pp. 1133-1139, 1998.
[40] J. Friend, Y. Gouda, K. Nakamira, and S. Ueha, "A simple bidirectional linear microactuator for nanopositioning - the "Baltan" microactuator," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 53, pp. 1160-1168, 2006.
[41] C. W. Chen, S. W. Hsiao, W. S. Yao¬, M. C. Tsai, and T. C. Chen, “Design of an active linear guide by piezoelectric actuators,” The 33rd Annual Conference of the IEEE Industrial Electronics Society, Taiwan, 2007.
[42] S. W. Hsiao, C. W. Chen, W. S. Yao and M. C. Tsai, “Design and application of a new piezoelectric actuator for ultrasonic motors,” International Automatic Control Conference, Taichung, Taiwan, 2007.
[43] J. L. Chen, S. W. Hsiao and M. C. Tsai, “Modeling and velocity control of a new single-phase drive ultrasonic motor,” International Conference on New Actuators, Germany, 2010.
[44] S. W. Hsiao, W. S. Yao and M. C. Tsai, “Development of a new type of vibrator for ultrasonic motors,” Proceedings of 2008 CACS International Automatic Control Conference, Taiwan, 2008.
[45] P. Hagedorn, J. Wallaschek, “Travelling wave ultrasonic motors, part I: working principle and mathematical modelling of the stator,” Journal of Sound and Vibration, vol. 155, pp. 31-46, 1992.
[46] T. Yamabuchi and Y. Kagawa, “Numerical simulation of a piezoelectric ultrasonic motor and its characteristics,” Simulation, Vol.8-3, pp. 69, 1989.
[47] T. Maeno, T. Tsukimoto, and A. Miyake, “Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, pp. 668-674, 1992.
[48] Y. Kagawa and T. Yamabuchi, “Finite element approach for a piezoelectric circular rod,” IEEE Transaction on Sonics and Ultrasonics, vol. su-23, pp. 379-385, 1976.
[49] Y. Kagawg and T. Yamabuchi, “Finite element simulaion of a composite piezoelectric ultrasonic transducer,” IEEE Transaction on Sonics and Ultrasonics, vol. su-26, pp. 81-88, 1979.
[50] D. Boucher, M. Lagier, and C. Maerfeld, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-pertyrbation method,” IEEE Transaction on Sonics and Ultrasonics, vol. su-28, pp. 318-330, 1981.
[51] Y. Kagawa and G. M. L. Gladwell, “Finite element analysis of flexure-type vibrators with electrotrictive transducers,” IEEE Transaction on Sonics and Ultrasonics, vol. su-17, pp. 41-49, 1970.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw