進階搜尋


下載電子全文  
系統識別號 U0026-2608201111055100
論文名稱(中文) 利用石筍紀錄中碳與氧同位素評價中國貴州古氣候與古植被演變之研究
論文名稱(英文) Carbon and Oxygen Isotopic Compositions in Speleothem from Yelang Cave System: A Systematic Study of Climate and Vegetation Changes in Central Guizhou, China
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 李宗翰
研究生(英文) Tsung-Han Li
學號 l46984080
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-吳銘志
共同指導教授-李紅春
口試委員-汪中和
口試委員-羅尚德
口試委員-張詠斌
中文關鍵字 石筍  穩定同位素  古氣候  石漠化 
英文關鍵字 Stalagmite  Stable Isotopes  Paleoclimate  Karst-desertification 
學科別分類
中文摘要   夜郎洞位於中國貴州中部黃果樹瀑布下游處(26°2’28.00”N,105°44’10.93”E,海拔1285m),在氣候上主要受到東亞季風以及印度季風的影響。本研究利用石筍紀錄及野外採集,推測貴州中部古氣候與古植被的演變,並探討過去500年來人類活動對該區石漠化的影響。
  夜郎洞石筍,YLD-15,長135mm。定年結果顯示,在YLD-15石筍約56mm有明顯的沉積中斷,該處之下沉積顏色較為深色且雜質較多(Th含量高,U含量低),55mm以上為晚全新世(小於1000年的純白方解石),55mm以下則是晚更新世(1.1萬年~2.5萬年)。從YLD-15中沿石筍生長軸共採得750個樣品,分析高解析度的δ18O和δ13C。在研究區也採集了水樣、土樣、植物及新生碳酸鹽,測量其中的C、H、O同位素。洞穴水樣:δD=8.30*δ18O+10.02(R2=0.93),指示來源為大氣降水。土壤中TOC的δ13C為-22.95‰,C3植物為-26‰~-31‰,C4植物約-11.9‰,由此估算土壤中有機碳來源主要為C3植物。在石筍YLD-15的晚更新世部分,δ18O與δ13C變化趨勢一致(即具有協變性),說明植被在無人為破壞的情況下隨氣候消長;而在55mm之上(500年以來),δ13C變化範圍從-7.4‰到-1.9‰,與δ18O協變性不明顯,指示近現代的植被發展除了受氣候影響之外,確實受到了人為的嚴重破壞。在與織金洞紀錄對比後,兩者紀錄碳同位素在近四百年內,皆有偏重的趨勢。從明朝末年,貴州地區成為反清的據點之一,到了清朝康熙雍正時期,政府大量開採貴州礦產資源,由外地引入大量人口到貴州中西部,進而造成土地大量開發,以及1850年到1950年之間,內亂加上外患,造成農村經濟衰退。這些都是在石灰岩脆弱的地質條件下,因人類活動使得植被不斷退化,造成喀斯特地區石漠化的加劇。
英文摘要 Yelang Cave (26°2’28.00”N, 105°44’10.93”E, 1285m a.s.l.) is located at Huangguoshu Township in the central Guizhou under the influence of east Asian Monsoon. For reconstruction of paleoclimate and paleoenvironment of the region, we have generated high-resolution δ18O and δ13C records (750 measurements) of a 135 mm long stalagmite (YLD-15) from the cave. Dating results show that the upper 55 mm part is younger than 1000 years, with clear calcite deposition. A depositional hiatus exists at 56 mm depth. Below this hiatus, the deposition of the stalagmite alternates between white-pure calcite layers and dark-dirty carbonate layers with late Pleistocene ages (11 ~ 25 ka with large uncertainties due to low U but high Th contents).
In order to understand the speleothem δ18O and δ13C meanings, we have collected waters, newly precipitated carbonates, soils and plants for analyzing their stable H, C and O isotopes. The average δ18O of 23 cavewater samples is -8.43‰ (SMOW). And, the δD and δ18O of 23 cavewater samples yield a relationship of δD = 8.30 * δ18O + 10.02 (R2 = 0.93), indicating the cavewater from meteoric source. For δ13C, the soil TOC has a δ13C value of -22.95‰. C3 plants have δ13C values ranging from -26‰ to -31‰, while C4 grass has δ13C of -11.9‰. Using these values, we can calculate the fractions of C3 and C4 plants in the modern time, showing C3 vegetation is dominant.
The δ13C in YLD-15 prior to 10.7 ka (below 6 cm) strongly co-varied with the δ18O, indicating climatic control on the surface vegetation with wet climates (lighter δ18O) resulting in better vegetation (lighter δ13C). However, for the upper 5.5 cm of the stalagmite (~500 yrs), the δ13C varies between -7.4‰ and -1.9‰, showing no correlation with the δ18O due to human deforestation. This increasing trend reflects strongly decrease of surface vegetation affected mainly by human activity regardless of climate conditions. During the reign of Emperor Yong Zheng of Qin Dynasty, large immigration occurred toward west central Guizhou due to mining of copper. This historically recorded event caused a significant deforestation, so that the Karst-desertification began then.
論文目次 <目錄>
摘要.....................................................Ⅰ
Abstract.................................................Ⅲ
誌謝......................................................V
章節目錄..................................................VI
表目錄...................................................IX
圖目錄....................................................X
<章節目錄>
第一章 緒論................................................1
1.1 前言..................................................1
1.2 研究目的..............................................3
1.3 前人研究..............................................6
1.3.1 石筍研究.........................................6
1.3.2 氧的穩定同位素(δ18O).............................7
1.3.3 碳的穩定同位素(δ13C) ............................8
1.3.4 石漠化研究….....................................9
第二章 研究方法與原理......................................11
2.1 石筍及穩定同位素.......................................11
2.1.1 洞穴石筍形成........................................11
2.1.1.1 適合石筍研究古氣候與古環境的條件..................13
2.1.1.2 石筍研究的優勢..................................13
2.1.2 同位素的基本原理....................................14
2.1.2.1 氧同位素.....................................14
2.1.2.2 影響石筍氧同位素之因素........................15
2.1.2.3 碳同位素.....................................19
2.1.2.4 影響石筍碳同位素之因素........................19
2.2 儀器分析原理..........................................23
2.2.1 ICP-MS感應耦合電漿質譜儀分析原理.....................24
2.2.2 210Pb定年原理.....................................27
2.2.3 IRMS同位素比值質譜儀................................28
2.2.4 EA元素分析儀.......................................31
2.2.5 TC/EA 高溫裂解元素分析儀............................32
第三章 研究區域介紹........................................34
3.1 區域地形概述..........................................34
3.2 氣候概況..............................................38
3.3 區域石漠化概況........................................41
第四章 樣品與實驗方法......................................47
4.1 洞穴水樣..............................................47
4.1.1 描述與前處理........................................47
4.2 洞穴上部植物與土壤....................................47
4.2.1 描述與前處理.....................................47
4.3 洞穴石筍..............................................49
4.3.1 描述與前處理.....................................49
4.4 石筍定年分析..........................................51
4.4.1 U-Th定年前處理...................................51
4.4.2 210Pb定年前處理..................................52
第五章 數據結果與分析討論...................................54
5.1 U-Th定年分析結果......................................54
5.2 210Pb定年分析結果.....................................57
5.3 洞穴水樣及洞穴上部植物、土壤及圍岩.......................59
5.3.1 洞穴水樣分析δD、δ18O結果及其涵意.....................59
5.3.2 植物、土壤及圍岩分析δ13C.............................61
5.4 洞穴石筍YLD碳氧同位素分析結果及其他數據比對..............62
5.4.1 氧同位素與近80年來貴陽地區降水資料對比..............62
5.4.2 氧同位素與貴陽地區500年來乾溼紀錄對比...............64
5.4.3 石筍碳氧同位素之趨勢關係..........................67
5.4.4 對比織金洞碳同位素紀錄............................74
5.4.5 對比董歌洞A石筍與織金洞氧同位素趨勢與變化...........75
第六章 結論...............................................79
第七章 參考文獻............................................81
參考文獻 Baker, A., Ito, E., and Smart, P. L., Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology, 136 (324), 263-170, 1997.

Bar-Mattews, M., Ayalon, A., and Kaufman, A. Late Quaternary paleoclimate in the Eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research, 47 (2) :155-168, 1997.

Cerling, T. E., The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240, 1984.

Cerling, T. E., Quade, J., Wang, Y., and Bowman, J. R., Carbon isotopes in soils and paleosols as eclogy and paleoecology indicators. Nature, 341: 138-139, 1989.

Craig H., Gordon L. L., and Horibe Y. Isotope exchange effect in the evaporation of water, 1. Low temperature experimental results. Journal of Geophysical Research 68, pp. 5079-5087, 1965.

Dansgaard, W., Stable isotopes in precipitation. Tellus. XVI (4) : 436-468, 1964.

Dorale J. A., Edwards R. L., Gonzalwz L., and Ito E. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science, 282: 1871-1874, 1998.

Emerich K., Ehhalt D. H., and Vogel J. C. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. a, -363137 I, 1970.

Emiliani C., Pleistocene temperature, Journal of Geology, 63, 538-578, 1955.

Fairbridge, R. W. Climatology of a glacial cycle, Quaternary Research, 2 (3), 238-302, 1972.

Fairchild I. J., Smith C. L., Baker A., Fuller L.,Spotl C., Mattey D., and McDermott F., Modification and preservation of environment signals in speleothems. Earth Science Reviews. ISSN 0012-8252, 2006.
Genty, D. Blamart, D., and Quahdi, R., Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421, 833-837, 2003.

GRIP members, Climate instability during the last interglacial period recorded in the CRIP ice core, Nature, 364, 203-207, 1993.

Hendy, C. H. The isotopic geochemistry of speleothems. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Acta, 35:801-824, 1971.

Holmgren K, and Karlen W, Paleoclimatic significance of the stable isotopic composition and petrology of a Late Pleistocene stalagmite from Botswana. Quaternary Research, 43: 320-328, 1995.

Ku, T. L., and Li, H. C., Speleothem as high-resolution paleoenvironment Archives: Records from northeastern China. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 107, 321-330, 1998.

Lauritzen, S. E. High resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems. Quaternary Research, 43:122-146, 1995.

Li H. C., Ku. T. L., You C. F., Cheng H., Edwards R. L., Ma Z. B., Tasi W. S., and Li M. D., 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochimica et Cosmochimica Acta 69: 3933-3947, 2005.

McCrea J. M. On the isotopic chemistry of carbonates and a paleotemperature scale . J. Chem. Phys. 18, 849-853, 1950.

McDermott, F. Paleoclimate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(728) , 901-918, 2001.

O’Neil J.R., and Clayton R. N. Oxygen isotope geothermometry.In isotopic and cosmic chemisty ( eds. Craig,H. Miller,S.L. and Wasserburg, G.J), North-Holland, Amsterdam, 157-168, 1964.

O’Neil J.R., and Epstein S. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide.Science, 152,198-201, 1966
O’Neil J.R., Clayton R. N.,and Mayeda T. K. Oxygen isotope fractionation in divalent metal carbonates. Jour Chem Physics, 30: 5547-5558, 1969.

Paulsen, D. E.,Li H. C., and Ku, T. L. Climate Variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quaternary Science Reviews, 22: 691-701, 2003.

Romanek C. S., Grossman E. L., and Morse J. W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effect of temperature and precipitation rate, Geochimica et Cosmochimica Acta Vol. 56, pp. 419-430, 1992.

Rozanski K., Araguas-Araguas L. and Gonfiantini R. Isotopic patterns in modern global precipitation. IN: P. K. Swart, K. C. Lohmann, H. McKenzie and S. Savin(Eds), Climate Change in Continental Isptopic Records. Geophysical Union, Washington, D.C, pp.1-36, 1993.

Rubinson M., and Clayton R. N. Carbon-13 fractionation between aragonite and calcite, Geochimica et Cosmochimica Acta, Volum 33, Issue 8, Pages 997-1002, 1969.

Turner J. V. Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim Cosmochim. Acta 46, 1183-1191, 1982.

Wang Y. J., Cheng H., Edwards R. L., Kong X. G. Shao X H., Chen S. T., Wu J. Y., Jiang X. Y., Wang X. F., and An Z. S. Millennial- and oribital-scale changes in the east Asia monsoon over the past 224000 yrs. Nature, 451: 1090-1093, 2008.

Yuan D. X., Cheng H.,Edwards R. L., Dykoski C. A., Kelly M. J., Zhang M. L., Qing J. M., Lin Y. S., Wang Y. J., Wu J. Y., Dorale J. A., An Z. S., and Cai Y. J., Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 203: 575-578, 2004.

王建力,袁道先,李廷勇,何瀟,李清。氣候變化的岩溶紀錄,北京科學出版社,2008。

李紅春,顧德隆,趙樹聲,北京石花洞地區水系氫氧同位素及氚含量研究-石花洞研究系列之一,地震地質,18(4),第325~328頁,1996。

李紅春、顧德隆、陳文寄、李鐵英。利用洞穴石筍的13C和18O重建3000a以來北京地區古氣候和古環境-石花洞研究系列之三,地震地質,19(1),第77~86頁,1997。

李紅春、顧德隆、陳文寄、袁道先、李鐵英,高分辨率洞穴石筍中穩定同位素應用之二:北京元大都建立後對樹林資源的破壞13C結果,地質評論,44(5),第456~463頁,1998a。

李紅春、顧德隆、Stoot,L.D.,陳文寄,高解析度洞穴石筍穩定同位素應用之一-京津地區500a來的氣候變化18O紀錄,中國科學,28:181-186,1998b。

李紅春、顧德隆、Paulsen, D. E.,陜南石筍穩定同位素紀錄中的古氣候和古季風信息。地震地質,22(4):63-78,2000。

李陽兵、白曉永、周國富、蘭安軍、龍健、安裕倫、梅再美,中國典型石漠化地區土地利用與石漠化的關係。地理學報,61(6):624-632,2006。

汪永進、吳江瀅、劉殿兵、吳金全、蔡演軍,石筍紀錄的東亞季風氣候H1事件突變性特徵,中國科學(D輯),32(3):227-233,2002。

胡超涌、黃俊華、楊冠青、方念喬,湖北清江石筍的碳氧同位素組成及其古氣候意義。礦物岩石地球化學通報,20(4):388-390,2001。

郭子興,貴州中西部一千年來的氣候和環境變化記錄:石筍ZJD-21記錄。國立成功大學地球科學研究所碩士論文,2009。

張美良、林玉石、覃嘉銘、程海,黔南洞穴石筍古氣候變化紀錄及終止點II的確定。中國科學(D輯),32(11) 942-950,2002。

張美良、林玉石、覃嘉銘、章程、塗林玲、程海,黔南七星洞石筍古氣候變化紀錄及末次間冰期終止點的確定。沉積學報,21(3):473-481,2003。

張美良、朱曉燕、程海、林玉石、覃嘉銘、冉景丞、王華、何師意,貴州荔波1200年來石筍高解析度的古氣候環境記錄。地球學報,第三十卷,第六期: 第831~840頁,2009。


陳起偉、熊康寧、藍安軍,基於”3S”的貴州喀斯特石漠化現狀及變化趨勢分析。中國岩溶,26(1):37-42,2007。

覃嘉銘、林玉石、張美良、李紅春,桂林全新世石筍高解析度13C紀錄及其古生態意義。第四季研究,20(4):351-358,2000。

劉東生,黃土與環境。中國大陸科學出版社,第247-249頁,1985。

劉再華、游省易、李強、張美良,水化學與鈣華碳氧穩定同位素再古環境重建的應用-以貴州荔波小七孔景區響水河為例。第四季研究,24(4):447-454,2004。

熊康寧、黎平、周忠發,喀斯特石漠化的遙感-GIS典型研究--以貴州省為例。北京:地質出版社,2002。

韓昭慶,雍正王朝在貴州的開發對貴州石漠化影響。復旦學報,第二期,第120~140頁,2006。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw