進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607202011145900
論文名稱(中文) 基於效率指標及延遲累積分布函數的物聯網應用層協定評估
論文名稱(英文) Internet of Things Application-layer Protocol Evaluation Based on Efficiency Metric and Delay CDF
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 黃達軒
研究生(英文) Tat-Hin Wong
學號 P76075050
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-蘇銓清
口試委員-陳培殷
口試委員-連震杰
口試委員-許子衡
中文關鍵字 應用層協定  協定評估  延遲累積分佈函數  效率指標 
英文關鍵字 Application Protocol  Protocol Evaluation  Delay CDF  Efficiency Metric 
學科別分類
中文摘要 在物聯網架構中,節點與節點之間會利用不同的應用層協定去傳送資訊,包括請求及回應,而不同的應用層協定會有不用的特性,例如使用不同的傳輸層協定、不同的重傳機制、不同長度的標頭和標尾等,這些特性皆會影響到資訊的傳輸表現。在當下的網路環境、資訊長度等條件下,不同應用層協定會有不同的傳輸表現,包括訊息錯誤率、延遲及能量損耗。目前有不同文獻會針對以上表現對不同應用層協定作評估,而當中大部份同時只選一種表現作比較,鮮有同時考慮多於一個表現的評估方法。
如果同時使用多於一種傳輸表現的評估,單靠分別比較數據有機會因結果不一致而無法找出表現最佳的協定。因此本論文提出兩種客觀的計算方法,效率指標及延遲累積分佈函數。使用效率指標則可同時反映訊息錯誤率及能量損耗,而使用延遲累積分佈函數作標準可以同時反映訊息錯誤率及延遲。本論文希望透過以上指標,可以在考慮多個傳輸表現時精準地分析協定之優劣。
英文摘要 In the Internet of Thing architecture, data, including requests and responses, is transmitted between different kinds of IoT nodes. Data can be delivered by different application protocols, which have different characteristics, for instance, different length of header and trailer, retransmission mechanism and transportation protocol selection. These features affect the data transmission performances including error rate, delay and efficiency under different network condition and payload size. Performance evaluation of IoT application protocol is a hot topic. However, the focus of most protocol evaluation in former literatures is comparing the mentioned transmission performance characteristic respectively. Evaluating application protocol with more than one performance metric is relatively less than focusing on one performance metric.
When more than one performance metric is considered, we cannot find out the best candidate by simply comparing the results, if the results are inconsistent. In this thesis, we introduce two metrics, efficiency metric and Delay Cumulative Distribution Function (CDF). Efficiency metric is a metric reflecting the performance on energy consumption and error rate at the same time. Delay CDF is a metric reflecting the performance on delay and error rate at the same time. This thesis expects the mentioned metrics can be used for evaluating protocols precisely when there are more than one performance metrics considered.
論文目次 中文摘要 I
Abstract II
Table of Contents 1
List of Figure 4
List of Table 5
List of Acronyms 7
1 Introduction 8
2 Background 11
2.1 Open M2M Platform 11
2.2 CoAP 11
2.3 MQTT 12
2.4 WebSocket 13
2.5 XMPP 13
2.6 Delay 14
2.7 Error Rate 14
2.8 Energy Consumption 15
2.9 Cumulative Distribution Function 16
2.10 Classification of M2M Applications 16
3 Related Work 17
3.1 Protocol Selection in M2M Platform 17
3.2 Performance evaluation of application protocols 18
3.3 Efficiency metric 19
3.4 Motivation 19
4 Evaluation Metrics 20
4.1 Efficiency Metric 20
4.2 Delay CDF 30
5 Experiment Environment 31
5.1 OM2M Platform with Protocol Selection Mechanism 31
5.2 Network Emulator 33
5.3 Energy Consumption Calculation 34
5.4 Device Application and Network Application 35
6 Evaluation 35
6.1 Experiment Setup 35
6.1.1 Hardware Setup 37
6.1.2 Software Setup 37
6.2 Experiment Results of Query Driven 39
6.2.1 Message Loss Rate 39
6.2.2 Average Message One-way-delay 41
6.2.3 Efficiency Metric 44
6.2.4 Delay CDF 49
6.2.4.1 Data Size 100 Bytes 49
6.2.4.2 Data Size 500 Bytes 50
6.2.4.3 Data Size 1000 Bytes 51
6.2.4.4 Data Size 1500 Bytes 52
6.2.4.5 Analysis 53
6.3 Experiment Results of Event Driven 54
6.3.1 Message Loss Rate 55
6.3.2 Average Message One-way-delay 56
6.3.3 Efficiency Metric 59
6.3.4 Delay CDF 63
6.3.4.1 Data Size 100 Bytes 63
6.3.4.2 Data Size 500 Bytes 64
6.3.4.3 Data Size 1000 Bytes 65
6.3.4.4 Data Size 1500 Bytes 66
6.3.4.5 Analysis 67
6.4 Special Cases Study 67
6.4.1 Blind Spot of Average Delay 67
6.4.2 Results Inconsistency 68
7 Conclusion and Future Work 70
Reference 72
Appendix 75
Delay CDF Table of Query Driven with Data Size 100 Bytes 75
Delay CDF Table of Query Driven with Data Size 500 Bytes 76
Delay CDF Table of Query Driven with Data Size 1000 Bytes 78
Delay CDF Table of Query Driven with Data Size 1500 Bytes 79
Delay CDF Table of Event Driven with Data Size 100 Bytes 81
Delay CDF Table of Event Driven with Data Size 500 Bytes 82
Delay CDF Table of Event Driven with Data Size 1000 Bytes 84
Delay CDF Table of Event Driven with Data Size 1500 Bytes 85
參考文獻 [1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications," in IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, Fourthquarter (2015)
[2] P. Datta and B. Sharma, "A survey on IoT architectures, protocols, security and smart city based applications," 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, pp. 1-5, 2017
[3] A. Alshamsi, Y. Anwar, M. Almulla, M. Aldohoori, N. Hamad and M. Awad, "Monitoring pollution: Applying IoT to create a smart environment," 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, pp. 1-4, 2017
[4] The Growth in Connected IoT Devices Is Expected to Generate 79.4ZB of Data in 2025, According to a New IDC Forecast. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS45213219 (Accessed June 30, 2020)
[5] S. Deshmukh and S. B. Vanjale, "IOT Based Traffic Signal Control for Reducing Time Delay of an Emergency Vehicle Using GPS," 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, pp. 1-3, 2018
[6] N. Datta, A. Malik, M. Agarwal and A. Jhunjhunwala, "Real Time Tracking and Alert System for Laptop through Implementation of GPS, GSM, Motion Sensor and Cloud Services for Antitheft Purposes," 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, pp. 1-6, 2019
[7] U. Tandale, B. Momin and D. P. Seetharam, "An empirical study of application layer protocols for IoT," 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, pp. 2447-2451, 2017
[8] C. Sharma and N. K. Gondhi, "Communication Protocol Stack for Constrained IoT Systems," 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, pp. 1-6, 2018 
[9] RFC 7252 - The Constrained Application Protocol (CoAP) Available: https://tools.ietf.org/html/rfc7252 (Accessed January 20, 2020)
[10] MQTT Available: https://mqtt.org/ (Accessed January 20, 2020)
[11] RFC 6455 - The WebSocket Protocol Avaible: https://tools.ietf.org/html/rfc6455 (Accessed February 14, 2020)
[12] XMPP _ XMPP Main Availiable: https://xmpp.org/ (Accessed February 14, 2020)
[13] M. B. Yassein, M. Q. Shatnawi and D. Al-zoubi, "Application layer protocols for the Internet of Things: A survey," 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, pp. 1-4, 2016
[14] M. Pohl, J. Kubela, S. Bosse and K. Turowski, "Performance Evaluation of Application Layer Protocols for the Internet-of-Things," 2018 Sixth International Conference on Enterprise Systems (ES), Limassol, pp. 180-187, 2018
[15] H. W. Chen and F. J. Lin, "Converging MQTT Resources in ETSI Standards Based M2M Platform," 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, pp. 292-295, 2014
[16] J. Toldinas, B. Lozinskis, E. Baranauskas and A. Dobrovolskis, "MQTT Quality of Service versus Energy Consumption," 2019 23rd International Conference Electronics, Palanga, Lithuania, pp. 1-4, 2019
[17] I. Mobin, N. Mohammed and S. Momen, "Optimal range estimation for energy efficient dynamic packet size," 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox's Bazar, pp. 50-55, 2017
[18] M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira, "OM2M: Extensible ETSI-compliant M2M Service Platform with Self-Configuration Capability," Procedia Computer Science, vol. 32, pp. 1079-1086, 2014
[19] R.G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge (1963)
[20] Park, Kun Il, Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3 (2018)
[21] A. Elmangoush, R. Steinke, and T. Magedanz, "AdM2M: adaptable machine-to-machine transport framework," Information Integration and Web-based Applications & Services (iiWAS), pp. 331-335, 2015
[22] Chun-Hao Tang, OM2M Platform with Application-layer Protocol Management and Selection Mechanisms, Institute of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. https://hdl.handle.net/11296/q6nhwb (2017)
[23] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan, “Performance evaluation of mqtt and coap via a common middleware,” in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–6, April 2014
[24] WANem. [Online]. Available: http://wanem.sourceforge.net (accessed April 19, 2019).
[25] Wireshark, http://www.wireshark.org/. (accessed April 19, 2019)

[26] A. Bluman, "Elementary Statistics: A Step by Step Approach 9th," McGraw-Hill, 2013
[27] Moquette. [Online]. Available: https://github.com/andsel/moquette (accessed June 12, 2020).
[28] Californium. [Online]. Available: https://github.com/eclipse/californium (accessed June 12, 2020).
[29] Openfire. [Online]. Available: https://www.igniterealtime.org/projects/openfire (accessed June 12, 2020).
[30] Tyrus. [Online]. Available: https://tyrus.java.net (accessed June 12, 2020).
[31] RFC 8323 - The Constrained Application Protocol (CoAP) Available: https://tools.ietf.org/html/rfc8323 (Accessed August 8, 2020)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw