進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201910442800
論文名稱(中文) 硫化處理與大氣電漿活化硫化錫/二硫化錫薄膜應用於高效水分解催化劑之研究
論文名稱(英文) Sulfurization and Atmosphere Air Plasma Treatment of SnSx (x=1, 2) Thin Films as an Effective Catalyst for Efficient Water Splitting
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃柏嘉
研究生(英文) Po-Chia Huang
學號 N58031170
學位類別 博士
語文別 中文
論文頁數 144頁
口試委員 指導教授-黃肇瑞
共同指導教授-王聖璋
口試委員-孫亦文
口試委員-施劭儒
口試委員-蘇彥勳
口試委員-曾文甲
口試委員-向性一
口試委員-吳季珍
口試委員-陳昭宇
中文關鍵字 硫化錫  二硫化錫  熱注入法  電觸媒  水分解產氫 
英文關鍵字 SnS  SnS2  2-D nanosheets  photoelectrocatalysts  photoelectrochemical cell  Hydrogen evolution reaction  Electrocatalysts  Water Splitting 
學科別分類
中文摘要 近年來,氫能源是個乾淨、環保、零汙染排出的能源載體,堪稱是現今最被期待的再生能源之一。傳統的水分解產氫轉換效率較低,需要藉由電觸媒的協助提升轉換效率。其中SnSx (x=1, 2)擁有窄能隙、良好的化學穩定性、低成本、無毒等優點,被認為適合應用於水分解產氫之觸媒。然而其應用瓶頸為材料表面呈化學惰性、反應點侷限等緣故,使SnSx (x=1, 2)不利於氫的吸附及脫附。為了改善以上缺點,許多研究都導向表面化學活性及原子級的修飾等方向發展。本研究將分為三個主軸進行討論,第一階段是藉由熱注入法合成SnS奈米晶體,進一步在低真空下進行硫化處理使SnS薄膜相變化成SnS2薄膜,最終將SnS與SnS2薄膜分別應用於光催化水分解之電極。由結果指出,在硫化處理後所得之SnS2薄膜擁有較低的電荷轉移電阻與高載子濃度等特性,同時我們解釋了SnSx (x=1, 2)薄膜在光催化過程中能階-能帶與電解質之相對關係與反應機制。第二階段會將SnS薄膜進一步以不同功率空氣電漿進行表面活化處理。實驗結果顯示,150W空氣電漿改變材料表面電子組態後,會在表面導入p型費米釘札,並產生具有較高親水性表面,使其更適合氫吸附及脫附,討論表面電漿對SnS薄膜表面能階-能帶位偏移對水分解產氫機制之變化。第三階段比較「表面硫化處理」與「表面大氣電漿處理」對於SnS薄膜水分解產氫之效率,由實驗結果可得知150W大氣電漿處理之SnS薄膜在3小時可產生66.37µmol之氫氣,且法拉第轉換效率可達62.6%,其結果明顯優於表面硫化處理之產氫率。表面大氣電漿處理可以在短的處理時間內大幅增加產氫之效率,同時實驗操作技術也更為快速便利。因此我們認為表面大氣電漿處理能更能有效提升SnS薄膜之水分解產氫效率。
英文摘要 Two-dimensional SnSx (x = 1, 2) nanocrystals are attractive catalysts for photoelectrochemical water splitting as their components are earth-abundant and environmentally friendly. SnS mixed-phase (orthorhombic and cubic phases) were synthesized by using a simple and facile colloidal method. The tin precursor was synthesized using tin oxide (SnO) and oleic acid (OA), while the sulfur precursor was prepared using sulfur powder (S) and oleylamine (OLA). The sulfur precursor was injected into the tin precursor and the prepared SnS nanocrystals were precipitated at a final reaction temperature of 190oC.
In the first part of the study, we have fabricated SnS thin-film photoelectrodes by spin coating mixed-phase SnS nanocrystals synthesized via a hot-injection technique on glass/Cr/Au substrates. The obtained SnS thin films can be transformed into SnS2 by introducing structural phase changes via a facile low-vacuum annealing protocol in the presence of sulfur. This sulfurization process enables the insertion of sulfur atoms between layers of SnS and results in the generation of shallow donors that alter the mechanism for water splitting. The SnS2 thin films are used as stable photocatalysts to drive the oxygen evolution reaction, and the light-current density of 0.233 mA/cm2 at 1.1V vs. RHE can be achieved due to the high carrier density, lower charge transfer resistance, and a suitable reaction band position. Based on a combination of UV-Vis spectroscopy (ultraviolet and visible spectroscopy), cyclic voltammetry and Mott–Schottky analysis, the band positions and band gaps of SnS and SnS2 relative to the electrolyte are determined and a detailed mechanism for water splitting is presented.
Second, we demonstrate enhanced water-splitting performance (I = 10 mA/cm2, Tafel slope = 60 mV/dec, onset potential = -80 mV) of atmospheric air plasma treated (AAPT) SnS thin films through hydrogen evolution reaction (HER). The as-prepared SnS films are subjected to Atmospheric Air Plasma Treatment (AAPT) which leads to formation of additional phases of Sn and SnO2 at plasma powers of 150 W and 250 W, respectively. The AAPT treatment at 150 W leads to the evaporation of the S atoms as SO2 generating a number of S-vacancies and Sn active edge sites over the surface of the SnS thin film. S-vacancies also create Sn active edge sites, surface p-type pinning that tunes the suitable band positions, and the hydrophilic surface which is beneficial for hydrogen adsorption/desorption. At high plasma power (250 W), the surface of the SnS films get oxidized and degrade the HER performance.
Our results demonstrate the potential of the sulfurization and atmospheric air plasma treatment (150W) process is capable to improve the HER performance of SnS thin films as promising photocatalysts for efficient and large-scale water splitting.
論文目次 中文摘要 I
Extended Abstract II
Introduction IV
Materials and Methods VII
2.1. Synthesis of Mixed-Phase SnS Nanocrystals VII
2.2. SnS and SnS2 Thin Films Deposition VII
2.3 Atmospheric air plasma treatment VIII
2.4. SnS and SnS2 Photoelectrochemical Measurements VIII
2.5 SnS electrochemical measurements VIII
Results and Discussion XI
3.1. SnSx (x = 1, 2) Nanocrystals as Effective Catalysts for Photoelectrochemical Water Splitting XI
3.2. Atmospheric air plasma treated SnS films: an efficient electrocatalyst for HER XXI
Conclusion XLI
致謝 XLIII
總目錄 XLVI
圖目錄 L
表目錄 LVII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
第二章 文獻回顧 4
2.1氫能源 4
2.1.1半導體材料產氫研究 6
2.2可見光催化氫反應 7
2.2.1光催化產氫材料要求 9
2.2.2能階能帶位置 14
2.3電催化氫反應 18
2.3.1電催化材料要求 20
2.3.2電催化性質表現之參數 22
2.4 常見的水分解產氫材料 25
2.4.1二維金屬硫族化物 28
2.4.2硫化錫 29
2.4.3介穩態硫化錫 31
2.5硫化錫應用於水分解產氫之研究 34
2.5.1本質硫化錫奈米晶體應用於水分解產氫 34
2.5.2 降低缺陷之合成技術 36
2.5.3改善催化導電性 39
2.5.4 添加助催化劑 40
2.5.5 表面缺陷對水分解產氫之影響 43
2.5.6混合相硫化錫應用於光催化產氫 48
第三章 實驗方法與分析設備 56
3.1實驗藥品 56
3.2實驗裝置 57
3.2.1熱注入合成裝置 57
3.2.2管型高溫爐裝置 58
3.2.3大氣電漿處理裝置 59
3.2.4電化學量測裝置 60
3.3實驗流程 61
3.3.1混合相硫化錫之合成 61
3.3.2混合相硫化錫薄膜製作 61
3.3.3硫化處理 61
3.3.4大氣電漿表面處理 62
3.4分析儀器 63
3.4.1微結構與成分分析 63
3.4.2光學性質分析 64
3.4.3電化學性質分析 64
3.4.4產氫效率量測 65
第四章 結果與討論 67
4.1硫化熱處理硫化錫薄膜應用於光催化水分解之研究 67
4.1.1硫化錫薄膜微結構分析 67
4.1.2硫化處理對硫化錫電子結構與電性分析 74
4.1.3硫化錫薄膜光學及水分解產氫之影響 79
4.1.4硫化錫與二硫化錫薄膜光催化水分解能階-能帶之關係 85
4.1.5硫化錫與二硫化錫薄膜光腐蝕之影響 90
4.2表面大氣電漿活化硫化錫薄膜 96
4.2.1硫化錫薄膜結構之影響 96
4.2.2硫化錫薄膜表面親水性及電子組態之影響 103
4.2.3大氣電漿對薄膜表面成分變化與電子能帶之影響 107
4.2.4硫化錫薄膜電催化產氫性能之影響 110
4.2.5能階-能帶結構之影響 113
4.3硫化錫薄膜產氫效率之比較 119
4.3.1 硫化錫與二硫化錫薄膜光催化產氫效率 119
4.3.2表面電漿處理硫化錫薄膜之催化產氫效率 119
第五章 結論 124
第六章 參考文獻 126
Author Resume 142
參考文獻 [1] Q.P. Lu, Y.F. Yu, Q.L. Ma, B. Chen, H. Zhang, 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions, Adv Mater, 28 (2016) 1917-1933.
[2] A. Iulianelli, S. Liguori, J. Wilcox, A. Basile, Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review, Catalysis Reviews, 58 (2016) 1-35.
[3] C.L. Wu, P.C. Huang, S. Brahma, J.L. Huang, S.C. Wang, MoS2-MoO2 composite electrocatalysts by hot-injection method for hydrogen evolution reaction, Ceram Int, 43 (2017) S621-S627.
[4] P. Li, Z. Yang, J. Shen, H. Nie, Q. Cai, L. Li, M. Ge, C. Gu, X.a. Chen, K. Yang, Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction, ACS applied materials & interfaces, 8 (2016) 3543-3550.
[5] Z.Y. Yin, B. Chen, M. Bosman, X.H. Cao, J.Z. Chen, B. Zheng, H. Zhang, Au Nanoparticle-Modified MoS2 Nanosheet-Based Photoelectrochemical Cells for Water Splitting, Small, 10 (2014) 3537-3543.
[6] Y.H. Sang, Z.H. Zhao, M.W. Zhao, P. Hao, Y.H. Leng, H. Liu, From UV to Near-Infrared, WS2 Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation, Adv Mater, 27 (2015) 363-369.
[7] J.F. Xie, R.X. Wang, J. Bao, X.D. Zhang, H. Zhang, S. Li, Y. Xie, Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions, Inorg Chem Front, 1 (2014) 751-756.
[8] F.C. Lei, L. Zhang, Y.F. Sun, L. Liang, K.T. Liu, J.Q. Xu, Q. Zhang, B.C. Pan, Y. Luo, Y. Xie, Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting, Angew Chem Int Edit, 54 (2015) 9266-9270.
[9] H. Kafashan, M. Azizieh, Z. Balak, Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations, Appl Surf Sci, 410 (2017) 186-195.
[10] J. Kois, S. Bereznev, J. Maricheva, N. Revathi, Electrochemical and photoelectrochemical characterization of SnS photoabsorber films, Mat Sci Semicon Proc, 58 (2017) 76-81.
[11] Y.F. Sun, Z.H. Sun, S. Gao, H. Cheng, Q.H. Liu, F.C. Lei, S.Q. Wei, Y. Xie, All-Surface-Atomic-Metal Chalcogenide Sheets for High-Efficiency Visible-Light Photoelectrochemical Water Splitting, Adv Energy Mater, 4 (2014) 1300611.
[12] M. Seal, N. Singh, E.W. McFarland, J. Baltrusaitis, Electrochemically Deposited Sb and in Doped Tin Sulfide (SnS) Photoelectrodes, J Phys Chem C, 119 (2015) 6471-6480.
[13] M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, A. Ray, Nanostructured SnS with inherent anisotropic optical properties for high photoactivity, Nanoscale, 8 (2016) 2293-2303.
[14] P.C. Huang, J.L. Huang, S.C. Wang, M.O. Shaikh, C.Y. Lin, Photoelectrochemical properties of orthorhombic and metastable phase SnS nanocrystals synthesized by a facile colloidal method, Thin Solid Films, 596 (2015) 135-139.
[15] M. Patel, M. Kumar, J. Kim, Y.K. Kim, Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes, J Phys Chem Lett, 8 (2017) 6099-6105.
[16] P.C. Huang, Y.M. Shen, S. Brahma, M.O. Shaikh, J.L. Huang, S.C. Wang, SnSx (x=1, 2) Nanocrystals as Effective Catalysts for PhotoelectrochemicalWater Splitting, Catalysts, 7 (2017).
[17] P.C. Huang, H.I. Wang, S. Brahma, S.C. Wang, J.L. Huang, Synthesis and characteristics of layered SnS2 nanostructures via hot injection method, J Cryst Growth, 468 (2017) 162-168.
[18] J. Yu, C.Y. Xu, F.X. Ma, S.P. Hu, Y.W. Zhang, L. Zhen, Monodisperse SnS2 Nanosheets for High-Performance Photocatalytic Hydrogen Generation, Acs Applied Materials & Interfaces, 6 (2014) 22370-22377.
[19] Y.F. Sun, H. Cheng, S. Gao, Z.H. Sun, Q.H. Liu, Q. Liu, F.C. Lei, T. Yao, J.F. He, S.Q. Wei, Y. Xie, Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting, Angew Chem Int Edit, 51 (2012) 8727-8731.
[20] X.Q. An, J.C. Yu, J.W. Tang, Biomolecule-assisted fabrication of copper doped SnS2 nanosheet-reduced graphene oxide junctions with enhanced visible-light photocatalytic activity, J Mater Chem A, 2 (2014) 1000-1005.
[21] G.B. Liu, Z.H. Li, T. Hasan, X.S. Chen, W. Zheng, W. Feng, D.C. Jia, Y. Zhou, P.A. Hu, Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting, J Mater Chem A, 5 (2017) 1989-1995.
[22] T.F. Zhou, W.K. Pang, C.F. Zhang, J.P. Yang, Z.X. Chen, H.K. Liu, Z.P. Guo, Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS2 to Orthorhombic-SnS, Acs Nano, 8 (2014) 8323-8333.
[23] A. Ennaoui, S. Fiechter, W. Jaegermann, H. Tributsch, Photoelectrochemistry of Highly Quantum Efficient Single-Crystalline N-Fes2 (Pyrite), J Electrochem Soc, 133 (1986) 97-106.
[24] T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)(4) Solar Cells, Adv Energy Mater, 3 (2013) 34-38.
[25] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency, Adv Energy Mater, 4 (2014).
[26] S.S. Shinde, A. Sami, D.H. Kim, J.H. Lee, Nanostructured SnS-N-doped graphene as an advanced electrocatalyst for the hydrogen evolution reaction, Chem Commun, 51 (2015) 15716-15719.
[27] S. Dou, L. Tao, J. Huo, S.Y. Wang, L.M. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis, Energ Environ Sci, 9 (2016) 1320-1326.
[28] L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, H.Q. Yu, Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation, J Phys Chem C, 115 (2011) 11466-11473.
[29] Y.F. Sun, S. Gao, F.C. Lei, Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis, Chem Soc Rev, 44 (2015) 623-636.
[30] S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Effect of Indium and Antimony Doping on SnS Photoelectrochemical Solar Cells, Chinese Phys Lett, 31 (2014).
[31] A. Gomez, H. Martinez, M. Calixto-Rodriguez, D. Avellaneda, P.G. Reyes, O. Flores, Modification of optical and electrical properties of chemical bath deposited SnS using O-2 plasma treatments, Appl Surf Sci, 275 (2013) 273-277.
[32] P.C. Huang, M.O. Shaikh, S.C. Wang, Structural and optoelectronic properties of alloyed SnxMn1-xS thin films, Adv Powder Technol, 27 (2016) 964-970.
[33] F. Lisco, A. Shaw, A. Wright, J.M. Walls, F. Iza, Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices, Sol Energy, 146 (2017) 287-297.
[34] X.M.S. Chu, D.O. Li, A.A. Green, Q.H. Wang, Formation of MoO3 and WO3 nanoscrolls from MoS2 and WS2 with atmospheric air plasma, J Mater Chem C, 5 (2017) 11301-11309.
[35] T. Lin, B. Kang, M. Jeon, C. Huffman, J. Jeon, S. Lee, W. Han, J. Lee, S. Lee, G. Yeom, K. Kim, Controlled Layer-by-Layer Etching of MoS2, Acs Applied Materials & Interfaces, 7 (2015) 15892-15897.
[36] N.Z. Muradov, T.N. Veziroglu, "Green" path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, Int J Hydrogen Energ, 33 (2008) 6804-6839.
[37] L. Savage, Flower Petals Take Shape, Plos Biol, 11 (2013).
[38] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-+.
[39] X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, X.B. Chen, Engineering heterogeneous semiconductors for solar water splitting, J Mater Chem A, 3 (2015) 2485-2534.
[40] R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J Photoch Photobio C, 11 (2010) 179-209.
[41] Z. Jiang, T. Xiao, V.L. Kuznetsov, P.P. Edwards, Turning carbon dioxide into fuel, Philos T R Soc A, 368 (2010) 3343-3364.
[42] J. Fang, L. Xu, Z.Y. Zhang, Y.P. Yuan, S.W. Cao, Z. Wang, L.S. Yin, Y.S. Liao, C. Xue, Au@TiO2-CdS Ternary Nanostructures for Efficient Visible-Light-Driven Hydrogen Generation, ACS Applied Materials & Interfaces, 5 (2013) 8088-8092.
[43] S.W. Cao, Y.P. Yuan, J. Fang, M.M. Shahjamali, F.Y.C. Boey, J. Barber, S.C.J. Loo, C. Xue, In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation, Int J Hydrogen Energ, 38 (2013) 1258-1266.
[44] H.J. Yan, J.H. Yang, G.J. Ma, G.P. Wu, X. Zong, Z.B. Lei, J.Y. Shi, C. Li, Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst, J Catal, 266 (2009) 165-168.
[45] A. Kudo, Z-scheme photocatalyst systems for water splitting under visible light irradiation, Mrs Bull, 36 (2011) 32-38.
[46] M. Zhou, X.W. Lou, Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities, Nano Today, 8 (2013) 598-618.
[47] X.B. Chen, Titanium Dioxide Nanomaterials and Their Energy Applications, Chinese J Catal, 30 (2009) 839-851.
[48] K. Sayama, H. Arakawa, Effect of Na2co3 Addition on Photocatalytic Decomposition of Liquid Water over Various Semiconductor Catalysts, J Photoch Photobio A, 77 (1994) 243-247.
[49] N. Koriche, A. Bouguelia, A. Aider, M. Trari, Photocatalytic hydrogen evolution over delafossite CuAlO2, Int J Hydrogen Energ, 30 (2005) 693-699.
[50] J. Chae, J. Lee, J.H. Jeong, M. Kang, Hydrogen Production from Photo Splitting of Water Using the Ga-incorporated TiO(2)s Prepared by a Solvothermal Method and Their Characteristics, B Korean Chem Soc, 30 (2009) 302-308.
[51] R. Sasikala, A. Shirole, V. Sudarsan, T. Sakuntala, C. Sudakar, R. Naik, S.R. Bharadwaj, Highly dispersed phase of SnO(2) on TiO(2) nanoparticles synthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation, Int J Hydrogen Energ, 34 (2009) 3621-3630.
[52] R. Sasikala, V. Sudarsan, C. Sudakar, R. Naik, T. Sakuntala, S.R. Bharadwaj, Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide, Int J Hydrogen Energ, 33 (2008) 4966-4973.
[53] M. Zalas, M. Laniecki, Photocatalytic hydrogen generation over lanthanides-doped titania, Sol Energ Mat Sol C, 89 (2005) 287-296.
[54] C.B. Zhao, Q.L. Yuan, Catalytic Emulsion Copolymerization of Styrene and Ethylene by Neutral Nickel (II) Complex, J Macromol Sci A, 46 (2009) 104-109.
[55] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chem Rev, 110 (2010) 6503-6570.
[56] T. Hirai, Y. Nomura, I. Komasawa, Immobilization of RuS2 nanoparticles prepared in reverse micellar system onto thiol-modified polystyrene particles and their photocatalytic properties, J Nanopart Res, 5 (2003) 61-67.
[57] J.H. Shan, S.Y. Huo, S.G. Shen, H.W. Sun, Kinetics and mechanism of oxidation of 1,3-butylene glycol by dihydroxyditellutoargentate (III) in alkaline medium, Turk J Chem, 30 (2006) 65-70.
[58] S. Saadi, A. Bouguelia, A. Derbal, M. Trari, Hydrogen photoproduction over new catalyst CuLaO2, J Photoch Photobio A, 187 (2007) 97-104.
[59] H.W. Sun, H.M. Shi, S.G. Shen, W.J. Kang, Z.F. Guo, Kinetics and mechanism for oxidation of L-proline by bis(hydrogen periodato)argentate(III) complex anion, Chinese J Chem, 26 (2008) 615-620.
[60] A. Boudjemaa, R. Bouarab, S. Saadi, A. Bouguelia, M. Trari, Photoelectrochemical H-2-generation over Spinel FeCr2O4 in X2- solutions (X2- = S2- and SO32-), Appl Energ, 86 (2009) 1080-1086.
[61] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem Rev, 110 (2010) 6503-6570.
[62] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nat Mater, 10 (2011) 456-461.
[63] Y.J. Tang, M.R. Gao, C.H. Liu, S.L. Li, H.L. Jiang, Y.Q. Lan, M. Han, S.H. Yu, Porous Molybdenum‐Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution, Angewandte Chemie International Edition, 54 (2015) 12928-12932.
[64] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W.D. Lou, Y. Xie, Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv Mater, 25 (2013) 5807-5813.
[65] D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett, 13 (2013) 1341-1347.
[66] D.Y. Wang, M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y.P. Wu, M.C. Lin, M.Y. Guan, J. Yang, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, H.J. Dai, Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction, J Am Chem Soc, 137 (2015) 1587-1592.
[67] D.J. Li, U.N. Maiti, J. Lim, D.S. Choi, W.J. Lee, Y. Oh, G.Y. Lee, S.O. Kim, Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction, Nano Lett, 14 (2014) 1228-1233.
[68] H. Li, K. Yu, C. Li, Z. Tang, B. Guo, X. Lei, H. Fu, Z. Zhu, Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst, Scientific reports, 5 (2015).
[69] S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Effect of Indium and Antimony Doping on SnS Photoelectrochemical Solar Cells, Chinese Phys Lett, 31 (2014) 106102.
[70] K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J Phys Chem C, 111 (2007) 7851-7861.
[71] X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa, Enhanced water splitting under modal strong coupling conditions, Nat Nanotechnol, 13 (2018) 953-+.
[72] S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, T. Ishihara, Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water, J Am Chem Soc, 132 (2010) 17343-17345.
[73] J. Chen, B. Lim, E.P. Lee, Y. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications, Nano Today, 4 (2009) 81-95.
[74] J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat Mater, 5 (2006) 909-913.
[75] X. Huang, Z.Y. Zeng, S.Y. Bao, M.F. Wang, X.Y. Qi, Z.X. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets, Nat Commun, 4 (2013).
[76] Y.J. Wang, B.Z. Fang, H. Li, X.T.T. Bi, H.J. Wang, Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells, Progress in Materials Science, 82 (2016) 445-498.
[77] E. Gibney, The super materials that could trump graphene, Nature, 522 (2015) 274-276.
[78] M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, 5 (2013) 263-275.
[79] D.Y. Chen, W.X. Chen, L. Ma, G. Ji, K. Chang, J.Y. Lee, Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion, Mater Today, 17 (2014) 184-193.
[80] J. Tang, X.H. Wang, L. Brzozowski, D.A.R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination, Adv Mater, 22 (2010) 1398-+.
[81] S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, Acs Nano, 7 (2013) 2898-2926.
[82] S.M. Herron, J.T. Tanskanen, K.E. Roelofs, S.F. Bent, Highly Textured Tin(II) Sulfide Thin Films Formed from Sheetlike Nanocrystal Inks, Chem Mater, 26 (2014) 7106-7113.
[83] N.K. Reddy, Growth-Temperature Dependent Physical Properties of SnS Nanocrystalline Thin Films, Ecs J Solid State Sc, 2 (2013) P259-P263.
[84] J.H. Han, S. Lee, J. Cheon, Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals, Chem Soc Rev, 42 (2013) 2581-2591.
[85] M. Devika, K.T.R. Reddy, N.K. Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, K.R. Gunasekhar, Microstructure dependent physical properties of evaporated tin sulfide films, J Appl Phys, 100 (2006) 023518-023511.
[86] D.B. Mitzi, L.L. Kosbar, C.E. Murray, M. Copel, A. Afzali, High-mobility ultrathin semiconducting films prepared by spin coating, Nature, 428 (2004) 299-303.
[87] K.T.R. Reddy, N.K. Reddy, R.W. Miles, Photovoltaic properties of SnS based solar cells, Sol Energ Mat Sol C, 90 (2006) 3041-3046.
[88] B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films, J Phys D Appl Phys, 33 (2000) 1054-1059.
[89] A.M. Tripathi, S. Mitra, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study, Rsc Adv, 4 (2014) 10358-10366.
[90] B. Zhao, Z.X. Wang, F. Chen, Y.Q. Yang, Y. Gao, L. Chen, Z. Jiao, L.L. Cheng, Y. Jiang, Three-Dimensional Interconnected Spherical Graphene Framework/SnS Nanocomposite for Anode Material with Superior Lithium Storage Performance: Complete Reversibility of Li2S, Acs Applied Materials & Interfaces, 9 (2017) 1407-1415.
[91] D. Avellaneda, M.T.S. Nair, P.K. Nair, Polymorphic tin sulfide thin films of zinc blende and orthorhombic structures by chemical deposition, J Electrochem Soc, 155 (2008) D517-D525.
[92] D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovoltaic structures using chemically deposited tin sulfide thin films, Thin Solid Films, 517 (2009) 2500-2502.
[93] M. Patel, A. Ray, Evaluation of Back Contact in Spray Deposited SnS Thin Film Solar Cells by Impedance Analysis, Acs Applied Materials & Interfaces, 6 (2014) 10099-10106.
[94] H. Kafashan, M. Azizieh, H.N. Vatan, Ultrasound-assisted electrodeposition of SnS: Effect of ultrasound waves on the physical properties of nanostructured SnS thin films, J Alloy Compd, 686 (2016) 962-968.
[95] X.Y. Chia, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered SnS versus SnS2: Valence and Structural implications on Electrochemistry and Clean Energy Electrocatalysis, J Phys Chem C, 120 (2016) 24098-24111.
[96] E.C. Greyson, J.E. Barton, T.W. Odom, Tetrahedral zinc blende tin sulfide nanoand microcrystals, Small, 2 (2006) 368-371.
[97] L.A. Burton, A. Walsh, Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3, J Phys Chem C, 116 (2012) 24262-24267.
[98] A.J. Biacchi, D.D. Vaughn, R.E. Schaak, Synthesis and Crystallographic Analysis of Shape-Controlled SnS Nanocrystal Photocatalysts: Evidence for a Pseudotetragonal Structural Modification, J Am Chem Soc, 135 (2013) 11634-11644.
[99] Z.T. Deng, D.R. Han, Y. Liu, Colloidal synthesis of metastable zinc-blende IV-VI SnS nanocrystals with tunable sizes, Nanoscale, 3 (2011) 4346-4351.
[100] Z.T. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution Synthesis of Ultrathin Single-Crystalline SnS Nanoribbons for Photodetectors via Phase Transition and Surface Processing, Acs Nano, 6 (2012) 6197-6207.
[101] B. Ghosh, M. Das, R. Banerjee, S. Das, Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications, Sol Energ Mat Sol C, 92 (2008) 1099-1104.
[102] B. Ghosh, R. Roy, S. Chowdhury, P. Banerjee, S. Das, Synthesis of SnS thin films via galvanostatic electrodeposition and fabrication of CdS/SnS heterostructure for photovoltaic applications, Appl Surf Sci, 256 (2010) 4328-4333.
[103] M. Hamadanian, V. Jabbari, M. Shamshiri, M. Asad, I. Mutlay, Preparation of novel hetero-nanostructures and high efficient visible light-active photocatalyst using incorporation of CNT as an electron-transfer channel into the support TiO2 and PbS, J Taiwan Inst Chem E, 44 (2013) 748-757.
[104] X.L. Zhang, Y.H. Tang, Y. Li, Y. Wang, X.N. Liu, C.B. Liu, S.L. Luo, Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol, Appl Catal a-Gen, 457 (2013) 78-84.
[105] J.F. Chao, Z. Xie, X.B. Duan, Y. Dong, Z.R. Wang, J. Xu, B. Liang, B. Shan, J.H. Ye, D. Chen, G.Z. Shen, Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx(x=1,2) architectures, Crystengcomm, 14 (2012) 3163-3168.
[106] F. Deng, X.Y. Lu, X.L. Pei, X.B. Luo, S.L. Luo, D.D. Dionysiou, Fabrication of ternary reduced graphene oxide/SnS2/ZnFe2O4 composite for high visible-light photocatalytic activity and stability, J Hazard Mater, 332 (2017) 149-161.
[107] G. Dai, H. Qin, H. Zhou, W. Wang, T. Luo, Template-free fabrication of Hierarchical macro/mesoporpous SnS2/TiO2 composite with enhanced photocatalytic degradation of Methyl Orange (MO), Appl Surf Sci.
[108] W.P. Zhang, X.Y. Xiao, X.Y. Zeng, Y. Li, L.L. Zheng, C.X. Wan, Enhanced photocatalytic activity of TiO2 nanoparticles using SnS2/RGO hybrid as co-catalyst: DFT study and photocatalytic mechanism, J Alloy Compd, 685 (2016) 774-783.
[109] L. Wang, H. Zhai, G. Jin, X. Li, C. Dong, H. Zhang, B. Yang, H. Xie, H. Sun, 3D porous ZnO - SnS p-n heterojunction for visible light driven photocatalysis, Physical Chemistry Chemical Physics, 19 (2017) 16576-16585.
[110] H. Zhu, X.Y. Qin, L.X. Cheng, A. Azcatl, J. Kim, R.M. Wallace, Remote Plasma Oxidation and Atomic Layer Etching of MoS2, Acs Applied Materials & Interfaces, 8 (2016) 19119-19126.
[111] H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman, A.H. Fragapane, J.H. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Norskov, X.L. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies (vol 15, pg 48, 2016), Nat Mater, 15 (2016).
[112] Y. Huang, J. Wu, X.F. Xu, Y.D. Ho, G.X. Ni, Q. Zou, G.K.W. Koon, W.J. Zhao, A.H. Castro Neto, G. Eda, C.M. Shen, B. Ozyilmaz, An innovative way of etching MoS2: Characterization and mechanistic investigation, Nano Res, 6 (2013) 200-207.
[113] T.L. Freeman, S.D. Evans, A. Ulman, Xps Studies of Self-Assembled Multilayer Films, Langmuir, 11 (1995) 4411-4417.
[114] V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, Charge Transfer in the MoS2/Carbon Nanotube Composite, J Phys Chem C, 115 (2011) 21199-21204.
[115] Y.F. Sun, Z.H. Sun, S. Gao, H. Cheng, Q.H. Liu, F.C. Lei, S.Q. Wei, Y. Xie, All-Surface-Atomic-Metal Chalcogenide Sheets for High-Efficiency Visible-Light Photoelectrochemical Water Splitting, Adv Energy Mater, 4 (2014).
[116] Y.H. Chang, F.Y. Wu, T.Y. Chen, C.L. Hsu, C.H. Chen, F. Wiryo, K.H. Wei, C.Y. Chiang, L.J. Li, Three- Dimensional Molybdenum Sulfi de Sponges for Electrocatalytic Water Splitting, Small, 10 (2014) 895-900.
[117] Y.J. Lin, C.S. Lee, C.T. Lee, Investigation of accumulated carrier mechanism on sulfurated GaN layers, J Appl Phys, 93 (2003) 5321-5324.
[118] N. Takeda, B.A. Parkinson, Adsorption morphology, light absorption, and Sensitization yields for squaraine dyes on SnS2 surfaces, J Am Chem Soc, 125 (2003) 5559-5571.
[119] S. Gedi, V.R.M. Reddy, C. Park, J. Chan-Wook, K.T.R. Reddy, Comprehensive optical studies on SnS layers synthesized by chemical bath deposition, Opt Mater, 42 (2015) 468-475.
[120] A. Jakhar, A. Jamdagni, A. Bakshi, T. Verma, V. Shukla, P. Jain, N. Sinha, P. Arun, Refractive index of SnS thin nano-crystalline films, Solid State Commun, 168 (2013) 31-35.
[121] X.Y. Yang, A. Wolcott, G.M. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett, 9 (2009) 2331-2336.
[122] Y. Shiga, N. Umezawa, N. Srinivasan, S. Koyasu, E. Sakai, M. Miyauchi, A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production, Chem Commun, 52 (2016) 7470-7473.
[123] M.G. Kibria, S. Zhao, F.A. Chowdhury, Q. Wang, H.P.T. Nguyen, M.L. Trudeau, H. Guo, Z. Mi, Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting, Nat Commun, 5 (2014) 3825-3831.
[124] I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy, A. Ganguly, C.H. Wang, J.K. Chang, C.I. Wu, L.C. Chen, K.H. Chen, Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide, Nano Lett, 14 (2014) 6097-6103.
[125] N. Zhang, Q. Zhao, X.P. Han, J.G. Yang, J. Chen, Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries, Nanoscale, 6 (2014) 2827-2832.
[126] X.L. Wang, X. Wang, Q.Y. Di, H.L. Zhao, B. Liang, J.K. Yang, Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO2 Nanoparticles, Materials, 10 (2017).
[127] Y. Zeng, J.Z. Luo, Y.Z. Wang, L. Qiao, B. Zou, W.T. Zheng, Controllable formation of multi-layered SnO2@Fe2O3 sandwich cubes as a high-performance anode for Li-ion batteries, Nanoscale, 9 (2017) 17576-17584.
[128] T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, V.R. Dhanak, Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory, Chem Mater, 28 (2016) 3718-3726.
[129] W.F. Chen, C.H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J.T. Muckerman, Y. Zhu, R.R. Adzic, Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production, Energ Environ Sci, 6 (2013) 943-951.
[130] L. Ma, X.P. Zhou, X.Y. Xu, L.M. Xu, L.L. Zhang, W.X. Chen, One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction, Adv Powder Technol, 26 (2015) 1273-1280.
[131] R.D. Nikam, A.Y. Lu, P.A. Sonawane, U.R. Kumar, K. Yadav, L.J. Li, Y.T. Chen, Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction, Acs Applied Materials & Interfaces, 7 (2015) 23328-23335.
[132] T.A. Shifa, F.M. Wang, Z.Z. Cheng, X.Y. Zhan, Z.X. Wang, K.L. Liu, M. Safdar, L.F. Sun, J. He, A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction, Nanoscale, 7 (2015) 14760-14765.
[133] S. Yu, J. Kim, K.R. Yoon, J.W. Jung, J. Oh, I.D. Kim, Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS2 Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers, Acs Applied Materials & Interfaces, 7 (2015) 28116-28121.
[134] M.L. Zou, J.D. Chen, L.F. Xiao, H. Zhu, T.T. Yang, M. Zhang, M.L. Du, WSe2 and W(SexS1-x)(2) nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction, J Mater Chem A, 3 (2015) 18090-18097.
[135] M.S. Faber, M.A. Lukowski, Q. Ding, N.S. Kaiser, S. Jin, Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis, J Phys Chem C, 118 (2014) 21347-21356.
[136] Y.H. Chang, R.D. Nikam, C.T. Lin, J.K. Huang, C.C. Tseng, C.L. Hsu, C.C. Cheng, C.Y. Su, L.J. Li, D.H.C. Chua, Enhanced Electrocatalytic Activity of MoSx on TCNQ-Treated Electrode for Hydrogen Evolution Reaction, Acs Applied Materials & Interfaces, 6 (2014) 17679-17685.
[137] U. De Silva, J. Masud, N. Zhang, Y. Hong, W.P.R. Liyanage, M.A. Zaeem, M. Nath, Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium, J Mater Chem A, 6 (2018) 7608-7622.
[138] M. Gorlin, P. Chernev, J.F. de Araujo, T. Reier, S. Dresp, B. Paul, R. Krahnert, H. Dau, P. Strasser, Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts, J Am Chem Soc, 138 (2016) 5603-5614.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw