進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201822053700
論文名稱(中文) 改質和再生瀝青混凝土之工程性質
論文名稱(英文) Engineering Properties of Modified and Recycled Asphalt Concrete
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳禹廷
研究生(英文) Yu-Ting Chen
電子信箱 v353600@gmail.com
學號 n66054433
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-陳建旭
口試委員-夏明勝
口試委員-蘇育民
口試委員-張介民
中文關鍵字 改質瀝青混凝土  再生瀝青混凝土  半圓彎曲試驗  臨界應變能  臨界應變能釋放速率 
英文關鍵字 SBS modified asphalt concrete  recycled asphalt concrete  semi-circular bending test  strain energy to failure  critical strain energy release rate 
學科別分類
中文摘要 疲勞裂縫是台灣瀝青路面破壞主要型態之一,本研究進行瀝青混凝土之工程性質試驗,探討瀝青混凝土裂縫行為,配比設計採用最大標稱粒徑19mm密級配規範,控制瀝青用量與級配曲線。抗水侵害能力結果顯示改質AR-8000M和改質Ⅲ型瀝青有相對較佳之抗張強度比,說明適當的改質瀝青對抗水侵害能力有幫助;相對地,隨著再生瀝青混凝土之回收料(RAP)添加比例之提升,間接張力值有下降趨勢,影響抗水侵害能力。依據半圓彎曲試驗結果,隨著瀝青勁度提高,臨界應變能會有上升趨勢,改質瀝青混凝土較傳統瀝青混凝土有較佳之抗開裂能力,半圓彎曲試驗呈現高分子材料於瀝青混凝土之貢獻;再生瀝青混凝土之臨界應變能和臨界應變能釋放速率結果,顯示添加至40%RAP之再生瀝青混凝土,較純瀝青混凝土有更高之裂紋擴展阻力,但隨著RAP添加量的上升,其抗開裂能力會隨之下降。
英文摘要 Fatigue cracking is one of the broken types of asphalt pavement in Taiwan. In this study, the engineering properties of asphalt concrete were tested to investigate the cracking behavior of asphalt concrete. The gradation of 19mm maximum aggregate size was adopted to control asphalt dosage and gradation curve. The results of water resistance showed that the AR-8000M and the SBS modified asphalt whose softening point was over 70°C, had good tensile strength ratio, indicating that appropriate modified effect was helpful for water resistance; besides, with the increase of the appending proportion for the reclaimed asphalt pavement (RAP), there was a downward trend in the result of indirect tension, affecting the ability of water resistance. According to the semi-circular bending test results, as the stiffness of asphalt increases, the strain energy to failure will increase. The modified asphalt concrete has better cracking resistance than the traditional asphalt concrete. The result of semi-circular bending test shows the contribution of polymer addition to asphalt concrete; in addition, The results of strain energy to failure and critical strain energy release rate of recycled asphalt concrete (RAC) show that 40% RAP of recycled asphalt concrete has better cracking resistance than traditional asphalt concrete. But with the RAP addition increasing, the cracking resistance of the recycled asphalt concrete will diminish.
論文目次 摘要 I
英文摘要 II
誌謝 VI
目錄 VIII
表目錄 XIII
圖目錄 XIV
第一章 緒論 1-1
1.1 前言 1-1
1.2 研究動機 1-2
1.3 研究目的 1-2
1.4 研究範圍 1-3
第二章 文獻回顧 2-1
2.1 改質瀝青 2-1
2.2.1 改質瀝青的生產 2-1
2.2 瀝青混凝土 2-2
2.2.1 穩定值和流度值(Stability & Flow) 2-3
2.2.2 回彈模數試驗 (Resilient Modulus test) 2-4
2.2.3 間接張力試驗 (Indirect Tensile test) 2-5
2.2.4 抗張強度比(Tensile Strength Ratio, TSR)試驗 2-6
2.2.5 車轍試驗(Rutting Test) 2-8
2.2.6 半圓彎曲試驗(Semi-Circular Bending test) 2-10
2.3 再生瀝青混凝土 2-15
2.3.1 抗張強度比(Tensile Strength Ratio, TSR)試驗 2-16
2.3.2 半圓彎曲試驗(Semi-Circular Bending test) 2-17
第三章 研究計畫 3-1
3.1 研究方法 3-1
3.2 In addition試驗材料 3-3
3.2.1 密級配瀝青混凝土材料 3-3
3.2.2 再生瀝青混凝土材料 3-3
3.3 瀝青材料 3-3
3.3.1 改質瀝青拌和程序 3-4
3.3.2 實驗室改質瀝青機械攪拌程序: 3-7
3.3.3 工廠改質瀝青拌和程序: 3-7
3.4 密級配瀝青混凝土 3-9
3.4.1. 密級配瀝青混凝土工程性質 3-9
3.4.2. 穩定值、流度值試驗 3-9
3.4.3. 回彈模數試驗 3-10
3.4.4. 間接張力試驗 3-11
3.4.5. 抗張強度比試驗 3-13
3.4.6. 車轍試驗 3-14
3.4.7. 半圓彎曲試驗 3-17
3.5 再生瀝青混凝土 3-23
3.5.1 回收瀝青萃取試驗 3-23
第四章 結果與討論 4-1
4.1 試驗材料基本特性 4-1
4.1.1 粒料物性 4-1
4.1.2 瀝青物性 4-2
4.1.3 配比設計曲線 4-4
4.2 瀝青混凝土工程性質 4-5
4.2.1 馬歇爾穩定值 4-5
4.2.2 馬歇爾流度值 4-8
4.2.3 回彈模數 4-11
4.2.4 間接張力 4-13
4.2.5 抗張強度比(TSR) 4-16
4.2.6 動穩定值 4-18
4.3 半圓彎曲試驗 4-22
4.3.1 臨界應變能(strain energy to failure, U) 4-22
4.3.2 臨界應變能釋放速率(Critical Strain Energy Release Rate, Jc) 4-24
4.4 再生瀝青基本特性 4-28
4.4.1 粒料篩分析 4-28
4.4.2 再生瀝青物性 4-29
4.5 再生瀝青混凝土工程性質 4-32
4.5.1 馬歇爾穩定值 4-33
4.5.2 馬歇爾流度值 4-33
4.5.3 抗張強度比 4-34
4.5.4 半圓彎曲試驗 4-35
4.6 改質和再生瀝青混凝土抗開裂性能之探討 4-39
4.6.1. 臨界應變能 4-39
4.6.2. 臨界應變能釋放速率 4-40
第五章 結論與建議 5-1
5.1 結論 5-1
改質瀝青混凝土 5-1
再生瀝青混凝土 5-2
5.2 建議 5-2
參考文獻 參-1
附錄 附-1
附錄A-1車轍輪跡試驗車轍值結果 附-1
參考文獻 劉宇、張肖寧、遲風霞 (2008)。「國外SCB(半圓彎抗)試驗方法在瀝青混合料中的研究與應用」,中外公路,第28卷,第3期,第190-192頁。
張金升 (2009)。瀝青材料,化學工業出版,大陸。
American Society of Testing and Materials (ASTM) (1995). Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. ASTM D1559-89, PA19428-2959, West Conshohocken.
American Society of Testing and Materials (ASTM) (1995). Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures. ASTM D4123-82, PA19428-2959, West Conshohocken.
American Society of Testing and Materials (ASTM) (1995). Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM D4867-09, PA19428-2959, West Conshohocken.
American Society of Testing and Materials (ASTM) (1995). Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM D6931-17, PA19428-2959, West Conshohocken.
American Society of Testing and Materials (ASTM) (2016). Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance using the Semi-Circular Bend Test (SCB) at Intermediate Temperatures. ASTM D8044-16, PA19428-2959, West Conshohocken.
Arabani, M. and B. Ferdowsi (2008). Evaluating the semi-circular bending test for HMA mixtures. International Journal of Engineering, Transactions A: Basics, Vol. 22(1), pp.47-58.
Bahia, H.U., D.I. Hanson, M. Zeng, H. Zhia, M.A. Khatri, and R.M. Anderson (2001) Characterization of modified asphalt binders in superpave mix design. NCHRP Report 459.
Biligiri, K. P., S. Said, and H. Hakim (2012). Asphalt mixtures’ crack propagation assessment using semi-circular bending tests. International Journal of Pavement Research and Technology, Vol.5(4), pp.209-217.
Brovelli, C., M. Crispino, J. Pais and P. Pereira (2015). Using polymers to improve the rutting resistance of asphalt concrete. Construction and Building Materials, Vol.77, pp.117-123.
Cardone, F., G. Ferrotti, F. Frigio, and F. Canestrari (2014). Influence of polymer modification on asphalt binder dynamic and steady flow viscosities. Construction and Building Materials, Vol.71, pp.453-443.
Chong, K. P., and M. D. Kuruppu (1984). New specimen for fracture toughness determination for rock and other materials. International Jourmal of Fracture, Vol.26, pp.59-62.
Fakhri, M., E. Haghighat Kharrazi, M. R. M. Aliha, and F. Berto (2018). The effect of loading rate on fracture energy of asphalt mixture at intermediate temperatures and under different loading modes. Frattura ed integrita strutturale, Vol.12(43), pp.113-132.
Hamzah, M. O., M. R. M. Hasan, M.F.C. Ven, J. L. M. Voskuilen (2012). Development of Dynamic Asphalt Stripping Machine for Better Prediction of Moisture Damage on Porous Asphalt in the Field. 7th RILEM International Conference on Cracking in Pavements. pp 71-81.
Jahromi, S. G., and A. Khodaii (2009). Comparing factors affecting resilient modulus in asphalt mixtures. SCIENTIA IRANICA, Vol.16(5), pp.367-375.
Kandhal, P.S., and E.R. Brown (1969) Comparative evaluation of 4-inch and 6-inch diameter specimen for testing large stone asphalt mixes. National Center for Asphalt Technology, NCAT Report No.90(5).
Kuai, H. D., H. J. Lee, and S. Mun (2010). Fatigue crack propagation model of asphalt concrete based on viscoelastic fracture mechanics. Transportation Research Record: Journal of the Transportation Research Board 2181, pp. 11-18.
Lim, I. L. and I.W.Johnston (1993). Stress intensity factors for semi-circular specimens under three-point bending. Engineering Fracnm Mechanics, Vol. 44(3), pp. 363-38.
Newman, K (2004) Polymer-modified asphalt mixtures for heavy-duty pavements: fatigue characteristics as measured by flexural beam testing. Presented for the FAA Worldwide Airport Technology Transfer Conference, Atlantic City, New Jersey, USA.
Sargand, S. M., and S. S. Kim (2001). Performance evaluation of polymer modified and unmodified Superpave mixes. Presented in Second International Symposium on Maintenance and Rehabilitation of Pavements and Technological Control, Auburn, AL.
Saboo, N., and P. Kumar (2016). Analysis of different test methods for quantifying rutting susceptibility of asphalt binders. Journal of Materials in Civil Engineering, Vol.28(7), 04016024.
Singh, D., S. F. Chitragar, and P. K. Ashish (2017). Comparison of moisture and fracture damage resistance of hot and warm asphalt mixes containing reclaimed pavement materials. Construction and Building Materials, Vol. 157, pp.1145-1153.
Singh, D., P, K, Ashish, and S. F. Chitragar (2018). Durability of innovative construction materials and structures laboratory performance of recycled asphalt mixes containing wax and chemical based warm mix additives using semi circular bending and tensile strength ratio tests. Construction and Building Materials, Vol. 158, pp.1003-1014.
Tapkın, S (2013). Optimal polypropylene fiber amount determination by using gyratory compaction, static creep and Marshall stability and flow analyses. Construction and Building Materials, Vol. 44, pp.399-410.
Yildirim, Y (2007). Polymer modified asphalt binders. Construction and Building Materials. Vol. 21, pp.66-72.
Zhang, Z., R. Roque, and B. Birgisson (2001). Evaluation of laboratory-measured crack growth rate for asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board 1767, pp. 67-75.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2029-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2028-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw