進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201821370900
論文名稱(中文) 由多道入射光束的相位調變達成動態操控表面電漿極化子的數值研究
論文名稱(英文) Numerical Study on the Dynamic Control of Surface Plasmon polaritons by Adjusting the Phase of Multiple Incident Beams
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生(中文) 郭峻甫
研究生(英文) Chun-Fu Kuo
學號 l28011033
學位類別 博士
語文別 中文
論文頁數 90頁
口試委員 指導教授-朱淑君
召集委員-蔡錦俊
口試委員-嚴大任
口試委員-盧廷昌
口試委員-林資榕
中文關鍵字 表面電漿極化子  電漿子學  光鉗  光學操控  光渦流 
英文關鍵字 Surface plasmon polaritons  plasmonics  optical tweezers  optical manipulation  optical vortices 
學科別分類
中文摘要 繞射極限限制了光學系統的解析能力以及光學裝置的大小,使其最小只能到波長尺寸,因此如何進入次波長尺寸的世界一直都是一個很重要的課題。而在兩種不同介質之界面處激發出的表面電漿極化子即為一把打開進入次波長尺寸大門的鑰匙,他具有波長比入射光波長還要小的特性,並且還擁有只會存在於界面附近的局域性以及高度增強的特性。表面電漿極化子可以被用來提升製作光學元件的精密度、光學顯微技術的解析度、縮小光鉗系統可捕捉的粒子大小、光儲存系統的容量以及縮小光邏輯閘元件的大小。

過去有很多設計結構來激發並控制表面電漿極化子分佈的研究。使用設計好的特殊複雜結構可以很好的控制表面電漿極化子分佈的情形,但是卻無法動態的去控制表面電漿極化子的分佈。本論文中不採用複雜的特殊結構,而是使用簡單的數條狹縫作為結構,並利用調變多道入射光束的相位來達成動態操控表面電漿極化子的分佈情形。利用一組雙狹縫結構搭配兩道光束可動態調控一維上兩個方向傳播強度比例不同的表面電漿極化子源。利用一組圍成方形的四狹縫結構搭配四道光束可動態調控二維干涉場型的分佈,並動態連續控制干涉場的亮暗點位置,亦可產生二維光渦流陣列表面電漿極化子。
英文摘要 This study proposes new methods to dynamically control the excitation of surface plasmon polaritons (SPPs) by modifying the phase of multiple incident beams with simple structures. All the proposed methods are verified by theoretical analyses and numerical simulations using finite-difference time-domain (FDTD) method. There are three parts in this study. The first part is excitation of SPPs with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams (i.e. TEM0,0). The results show that we can control the intensity ratios from 0.069 to 14 for single-slit case and from 0.0087 to 115 for double-slit case. The second part is excitation of different SPP interference patterns and high spatial density SPP vortex array by phase control of dual first order Hermite Gaussian beams (i.e. TEM0,1 or TEM1,0). The results show that the period of the SPP vortex array had only half SPP wavelength. The third part is dynamically controlling the interference pattern of SPPs by phase control of quad fundamental Gaussian beams and its application to particle manipulation. The results show that we can simultaneously manipulate multi-particle moving the same path.
論文目次 中文摘要 II
英文延伸摘要 IV
致謝 XI
目錄 XIII
表目錄 XV
圖目錄 XVI
第一章 前言 1
第二章 表面電漿極化子 4
2.1 金屬-介電質界面的表面電漿極化子 5
2.2 金屬-空氣界面的表面電漿極化子 9
第三章 時域有限差分法 11
3.1 馬克斯威爾方程組和Yee演算法 12
3.1.1 馬克斯威爾方程組 12
3.1.2 Yee演算法 14
3.2 數值色散和穩定性 19
3.2.1 數值色散 19
3.2.2 穩定性 22
3.3 光源 24
3.4 邊界條件 27
3.5 材料性質 30
第四章 動態控制表面電漿極化子在一維方向上之傳播強度 32
4.1 單狹縫結構 32
4.1.1 單狹縫設計 32
4.1.2 雙高斯光束 36
4.1.3 模擬結果 38
4.2 雙狹縫結構 42
4.2.1 雙狹縫設計 42
4.2.2 模擬結果 44
4.3 結論與討論 48
第五章 動態控制表面電漿極化子二維干涉場型分布並產生表面電漿極化子渦流陣列 52
5.1 設計與理論 52
5.2 雙赫米高斯光束 57
5.3 表面電漿極化子渦流陣列 61
5.3.1 理論推導光渦流之存在 61
5.3.2 模擬結果 64
5.4 控制表面電漿極化子二維干涉場型分佈 67
5.5 結論 69
第六章 動態控制表面電漿極化子二維干涉場型分布並應用於粒子操控 70
6.1 表面電漿極化子一維干涉場型之控制 70
6.2 表面電漿極化子二維干涉場型之控制 74
6.3 動態粒子操控 77
6.4 結論 81
第七章 未來展望 82
參考文獻 84
參考文獻 1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).
2. P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, and R. E. Burge, "Analysis of surface plasmon interference pattern formed by optical vortex beams," Opt. Express 16, 18451-18456 (2008).
3. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
4. W. Dai and C. M. Soukoulis, "Theoretical analysis of the surface wave along a metal-dielectric interface," Phys. Rev. B 80, 155407 (2009).
5. R. Mehfuz, M. W. Maqsood, and K. J. Chau, "Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering," Opt. Express 18, 18206-18216 (2010).
6. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92, 051115 (2008).
7. P. Ginzburg, E. Hirshberg, and M. Orenstein, "Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments," J. Opt. A: Pure Appl. Opt. 11, 114024 (2009).
8. J. Le Perchec, A. Barbara, and P. Quemerais, "Near-, mesoscopic and far-field regimes of a subwavelength Young's double-slit," New J. Phys. 13, 083025 (2011).
9. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julie, V. Mathet, and M. Mortier, "Near-field analysis of surface waves launched at nanoslit apertures," Phys. Rev. Lett. 98, 153902 (2007).
10. S. Ravets, J. C. Rodier, B. E. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, "Surface plasmons in the Young slit doublet experiment," J. Opt. Soc. Am. B 26, B28-B33 (2009).
11. S. H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin Heidelberg, 1988).
13. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures," Phys. Rev. Lett. 95, 263902 (2005).
14. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Approximate model for surface-plasmon generation at slit apertures," J. Opt. Soc. Am. A 23, 1608-1615 (2006).
15. A. L. Stepanov, A. Drezet, and J. R. Krenn, Surface Plasmon Polariton Nanooptics (Nova Science Publisher, Inc., New York, 2012).
16. A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, "Semiconductor Surface Plasmon Sources," Phys. Rev. Lett. 104, 226806 (2010).
17. B. Hu, B. Y. Gu, Y. Zhang, and M. Liu, "Transmission interference tuned by an external static magnetic field in a two-slit structure," Appl. Phys. Lett. 95, 121103 (2009).
18. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, "Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons," Nano Lett. 11, 4207-4212 (2011).
19. B. Eftekharinia, A. Moshaii, and A. Dabirian, "Design of a Slit-Groove Coupler for Unidirectional Excitation of the Guided Surface Plasmon Polaritons Through a Plasmonic Slot Waveguide," Plasmonics 12, 131-138 (2017).
20. W. J. Yao, S. Liu, H. M. Liao, Z. Li, C. W. Sun, J. J. Chen, and Q. H. Gong, "Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna," Nano Lett. 15, 3115-3121 (2015).
21. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, "Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit," Appl. Phys. Lett. 97, 041113 (2010).
22. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
23. J. J. Chen, C. W. Sun, H. Y. Li, and Q. H. Gong, "Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit," Nanoscale 6, 13487-13493 (2014).
24. T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, "Directional excitation of surface plasmons with subwavelength slits," Appl. Phys. Lett. 92, 101501(2008).
25. Y. F. Zhang, H. M. Wang, H. M. Liao, Z. Li, C. W. Sun, J. J. Chen, and Q. H. Gong, "Unidirectional launching of surface plasmons at the subwavelength scale," Appl. Phys. Lett. 105, 231101 (2014).
26. Y. Kong, W. Quan, Q. Wei, and P. Qiu, "Beam focusing and unidirectional excitation from four nanoslits filled with air and non-linear material," J. Mod. Opt. 63, 932-936 (2016).
27. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, "Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence," Appl. Phys. Lett. 94, 011114 (2009).
28. S. Y. Lee, W. Lee, Y. Lee, J. Y. Won, J. Kim, I. M. Lee, and B. Lee, "Phase-controlled directional switching of surface plasmon polaritons via beam interference," Laser Photonics Rev. 7, 273-279 (2013).
29. H. F. Hu, X. Zeng, Y. Zhao, J. Li, H. M. Song, G. F. Song, Y. Xu, and Q. Q. Gan, "Unidirectional Coupling of Surface Plasmon Polaritons by a Single Slit on a Metal Substrate," IEEE Photon. Technol. Lett. 28, 2395-2398 (2016).
30. H. Kim and B. Lee, "Unidirectional Surface Plasmon Polariton Excitation on Single Slit with Oblique Backside Illumination," Plasmonics 4, 153-159 (2009).
31. F. Lu, L. Sun, J. Wang, K. Li, and A. S. Xu, "Broad-angle and efficient unidirectional excitations of surface plasmons with dielectric-coated subwavelength metallic periodic nanoslits," Appl. Phys. Lett. 105, 091112 (2014).
32. T. Liu and S. Y. Wang, "Orbital Angular Momentum-Controlled Tunable Directional Plasmonic Coupler," Ieee Photonic Tech L 28, 91-94 (2016).
33. T. Liu and S. Y. Wang, "Nanoscale plasmonic coupler with tunable direction and intensity ratio controlled by optical vortex," J. Appl. Phys. 120, 123108(2016).
34. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and Z. X, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726-1729 (2005).
35. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
36. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005).
37. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, "Multiple-Wavelength Focusing of Surface Plasmons with a Nonperiodic Nanoslit Coupler," Nano Lett. 11, 2693-2698 (2011).
38. S. T. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. J. Xu, M. H. Hong, D. H. Zhang, J. H. Teng, A. Danner, and C. W. Qiu, "On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits," Nanoscale 8, 2227-2233 (2016).
39. Q. Wang, J. Bu, and X. C. Yuan, "High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays," Opt. Express 18, 2662-2667 (2010).
40. P. Dvorak, T. Neuman, L. Brinek, T. Samoril, R. Kalousek, P. Dub, P. Varga, and T. Sikola, "Control and Near-Field Detection of Surface Plasmon Interference Patterns," Nano Lett. 13, 2558-2563 (2013).
41. D. L. Liu, K. Li, F. Lu, C. C. Ho, and A. S. Xu, "Compact Plasmonic Unidirectional Coupler With High Performance Based on an Asymmetric Slit-Groove Structure," J. Lightwave Technol. 32, 4235-4241 (2014).
42. H. Caglayan and E. Ozbay, "Surface wave splitter based on metallic gratings with sub-wavelength aperture," Opt. Express 16, 19091-19096 (2008).
43. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, H. Y. Li, and X. G. Luo, "A plasmonic splitter based on slot cavity," Opt. Express 19, 13831-13838 (2011).
44. Q. L. Tan, Q. H. Guo, H. C. Liu, G. Huang, and S. Zhang, "Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases," Nanoscale 9, 4944-4949 (2017).
45. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).
46. S. Jia, Y. M. Wu, J. H. Si, F. Chen, and X. Hou, "Subwavelength beam focusing via multiple-metal slits arranged along a triangle surface," Opt. Commun. 355, 586-590 (2015).
47. F. H. Hao, R. Wang, and J. Wang, "A Novel Design Method of Focusing-control Device by Modulating SPPs Scattering," Plasmonics 5, 45-49 (2010).
48. H. F. Shi, C. L. Du, and X. G. Luo, "Focal length modulation based on a metallic slit surrounded with grooves in curved depths," Appl. Phys. Lett. 91, 093111 (2007).
49. H. Pang, H. T. Gao, Q. L. Deng, S. Y. Yin, Q. Qiu, and C. L. Du, "Multi-focus plasmonic lens design based on holography," Opt. Express 21, 18689-18696 (2013).
50. P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, "High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices," Appl. Phys. Lett. 97, 241109 (2010).
51. C. L. Zhang, C. J. Min, L. P. Du, and X. C. Yuan, "Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging," Appl. Phys. Lett. 108, 201601 (2016).
52. C. L. Zhang, Z. Q. Xin, C. J. Min, and X. C. Yuan, "Research progress of plasmonic structure illumination microscopy," Acta Physica Sinica 66, 148701 (2017).
53. S. B. Wei, T. Lei, L. P. Du, C. L. Zhang, H. K. Chen, Y. Yang, S. W. Zhu, and X. C. Yuan, "Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting," Opt. Express 23, 30143-30148 (2015).
54. F. F. Wei, D. L. Lu, H. Shen, W. W. Wan, J. L. Ponsetto, E. Huang, and Z. W. Liu, "Wide Field Super-Resolution Surface Imaging through Plasmonic Structured Illumination Microscopy," Nano Lett. 14, 4634-4639 (2014).
55. M. L. Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nat. Photonics 5, 349-356 (2011).
56. J. Xie, L. Wang, Z. W. Liao, Y. Z. Huang, S. B. Li, S. X. Wang, and W. J. Wen, "Selective plasmonic trapping in periodic gold polygon tetramers," Superlattices Microstruct. 75, 593-600 (2014).
57. J. F. Shen, J. Wang, C. J. Zhang, C. J. Min, H. Fang, L. P. Du, S. W. Zhu, and X. C. Yuan, "Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode Surface-enhanced Raman scattering," Appl. Phys. Lett. 103, 191119 (2013).
58. K. Wang, E. Schonbrun, and K. B. Crozier, "Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film," Nano Lett. 9, 2623-2629 (2009).
59. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, Berlin Heidelberg, 2006).
60. L. Rayleigh, "Note on the remarkable case of diffraction spectra described by Prof. Wood.," Philos. Mag. 14, 60-65 (1907).
61. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
62. T. Turbadar, "Complete Absorption of Light by Thin Metal Films," Proc. Phys. Soc. 73, 40-44 (1959).
63. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," A. Z. Physik 216, 398-410 (1968).
64. Kretschm, E. and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift für Naturforschung A 23, 2135-& (1968).
65. H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
66. S. Babar and J. H. Weaver, "Optical constants of Cu, Ag, and Au revisited," Appl. Opt. 54, 477-481 (2015).
67. A. Taflove and S. C. Hagness, Computational electrodynamics : the finite-difference time-domain method (Artech House, Boston, 2005).
68. A. Elsherbeni and V. Demir, The Finite-Difference Time-Domain Method: Electromagnetics with MATLAB Simulations (SciTech Publishing, Inc., Raleigh, 2009).
69. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Inc., Boca Raton, 1993).
70. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, New York, 1999).
71. K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
72. J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves," J. Comput. Phys. 114, 185-200 (1994).
73. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag. 43, 1460-1463 (1995).
74. J. A. Roden and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett. 27, 334-339 (2000).
75. S. C. Chu, C. S. Yang, and K. Otsuka, "Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer," Opt. Express 16, 19934-19949 (2008).
76. E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic Press, San Diego, 1998).
77. I. Moreno, "Jones matrix for image-rotation prisms," Appl. Opt. 43, 3373-3381 (2004).
78. N. R. Heckenberg, R. Mcduff, C. P. Smith, and A. G. White, "Generation of Optical-Phase Singularities by Computer-Generated Holograms," Opt. Lett. 17, 221-223 (1992).
79. S. Quabis, R. Dorn, and G. Leuchs, "Generation of a radially polarized doughnut mode of high quality," Appl. Phys. B-Lasers O. 81, 597-600 (2005).
80. D. L. Ermak and J. A. Mccammon, "Brownian Dynamics with Hydrodynamic Interactions," J. Chem. Phys. 69, 1352-1360 (1978).
81. G. Volpe and G. Volpe, "Simulation of a Brownian particle in an optical trap," Am. J. Phys. 81, 224-230 (2013).
82. E. Dickinson, "Brownian Dynamics with Hydrodynamic Interactions - the Application to Protein Diffusional Problems," Chem. Soc. Rev. 14, 421-455 (1985).
83. J. Kestin, M. Sokolov, and W. A. Wakeham, "Viscosity of Liquid Water in Range -8-Degrees-C to 150-Degrees-C," J. Phys. Chem. Ref. Data. 7, 941-948 (1978).


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw