進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201815492100
論文名稱(中文) 以液相化學法製備鎢青銅粉末並將其薄膜應用於遮蔽近紅外光性質之研究
論文名稱(英文) Preparing tungsten bronze nanoparticles by solution-based chemical routes and the NIR shielding properties of thin films deposited by electron beam evaporation
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 吳品蓁
研究生(英文) Pin-Jhen
學號 N56054172
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-黃肇瑞
口試委員-盧鴻華
口試委員-王聖璋
口試委員-陳嘉勻
口試委員-蘇彥勳
中文關鍵字 銫鎢青銅  近紅外光遮蔽  光學性質  液相化學法 
英文關鍵字 cesium tungsten bronze  near infrared shielding  optical properties  solution-based chemical route 
學科別分類
中文摘要 隨著全球暖化效應越來越嚴重,再生能源的應用也越來越受世界各國重視。若能在居家房屋、辦公大樓等加裝設備,使得建築物能在不消耗能源前提下,具有減少或隔絕一些太陽能輻射光譜的吸收,則能夠降低空調等電器設備的使用,進而達到節省能源的目的。因此具有遮蔽近紅外光性質的材料被廣泛地研究,他們可以被應用在許多方面像是:太陽能源收集器、智慧窗及光學過濾器上。
其中具有電致變色性質的鎢青銅化合物(MxWO3)正是適合用於此方面的原料。三氧化鎢(WO3)摻雜了不同陽離子元素後所形成的非劑量比化合物被認為具有良好的光學及電學性質,且依據不同的摻雜元素、含量及溫度會有不同的結構產生。其中六方相已被認為具有良好的可見光穿透及遮蔽近紅外光的特性。另外,隨著摻雜陽離子的量越多,其遮蔽近紅外光的能力會越強。目前,大部分製備鎢青銅化合物粉末的方法以溶劑熱法及水熱法為大宗,但由於此兩種方法具有高壓報炸、反應時間太長及通有危險性氣體的可能性,因此具有相對較安全及反應時間較短的方法成為了大家追求的目標。
本研究採用兩種反應時間較短且相對較安全的液相化學法合成銫鎢青銅(CsxWO3)粉末,並針對其晶體結構、表面形貌、化學成分和鍵結及光學性質進行探討。之後會將第二種方法(低反應溫度法)所製出的粉末當作電子束蒸鍍機靶材的原料,並會探討薄膜的表面形貌、晶體結構、化學成份及光學性質。
從實驗結果可以得知在第一種方法中的表面活性劑正三辛胺(TOA)的添加與否及其含量會影響銫鎢青銅(CsxWO3)粉末所形成的相,而在最高含量的TOA添加下可以得到六方相的CsxWO3粉末。光學性質方面則可以看到六方相的CsxWO3具有最佳的可見光穿透及遮蔽近紅外線的能力。
而由第二種液相化學法所製出的粉末則具有大量且亦為六方相CsxWO3化合物的特性,另外,其實驗過程也較為簡便。而由此方法所製得的粉末會當作電子束蒸鍍機的靶材,並比較在固定溫度、不同燒結時間下,其對靶材相對密度的影響。
而在以電子束蒸鍍機所鍍出的薄膜方面,實驗結果顯示CsxWO3薄膜的光學性質表現會隨著退火溫度的增加,而有更好的遮蔽近紅外光特性,且以六方相的CsxWO3具有最佳的光學性質表現。而從化學分析電子光譜儀(XPS)可以知道,部分六價的鎢離子會被還原成五價的鎢離子,形成非劑量比的銫鎢青銅化合物(CsyW1-x6+Wx5+O3)。而且隨著五價鎢離子的量越多,銫鎢青銅化合物遮蔽近紅外光的特性也會越佳。
英文摘要 In this study, we report the synthesis of CsxWO3 powders by two solution-based chemical routes. One of the methods is hot injection method, whose materials are WCl6, Cs2CO3, oleylamine, NH4OH and tri-n-octylamine and the other is low-reaction temperature method, whose materials are H2WO4, CsOH•H2O and deionized water with triethylamine. Two methods can be processed at a relatively short time and on a safer environment. Also, both methods can produce hexagonal CsxWO3 powders, which have desirable visible transmittance and good near infrared shielding properties. The CsxWO3 thin films were grown on glass substrates by electron beam evaporation with using the powders prepared by the low-reaction temperature method, which can produce mass amount of hexagonal CsxWO3 powders more easily. The as-deposited thin films are amorphous and that transform into hexagonal CsxWO3 with some cubic phase peaks after annealing under N2 atmosphere. With the gas changing into H2, the phase changes into hexagonal CsxWO3. The result shows that the hexagonal thin films have better visible transmittance and near-infrared shielding properties than the cubic phase. In addition, with the annealing temperature increasing, the ability of NIR shielding is more desirable. (500C-H2 annealed CsxWO3 has the highest transmittance (80%) in the visible light region and the lowest transmittance (42%) in the NIR region). The as-synthesized and after heat-treatment CsxWO3 powders and thin films are characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), transmission electron microscope(TEM), X-ray photoelectron spectroscopy (XPS), and UV-VIS-NIR optical device.
論文目次 摘要 I
Extended Abstract III
致謝 XX
總目錄 XXII
圖目錄 XXV
第一章 緒論 1
1-1. 前言 1
1-2. 研究動機 7
第二章 文獻回顧 8
2-1. 光與熱的來源及傳播機制 8
2-2. 鎢青銅材料簡介 10
2-2-1. 鎢青銅之結構 10
2-2-2. 鎢青銅之變色機制 18
2-2-3. 鎢青銅之吸熱機制 20
2-3. 鎢青銅奈米粉末製備方法 34
2-3-1. 水熱法 35
2-3-2. 溶劑熱法 36
2-3-3. 熱裂解法 37
2-4. 鎢青銅薄膜之製備 40
第三章 研究方法與實驗步驟 42
3-1. 實驗設備 42
3-1-1. 三口瓶設備 42
3-1-2. 爐管系統 42
3-1-3. 電子束蒸鍍機 42
3-2. 實驗流程 47
3-2-1. 粉末之製備 47
3-2-2. 基板之清洗 48
3-2-3. 薄膜之蒸鍍 49
3-2-4. 退火處理 49
3-3. 性質分析與方法 50
3-3-1. 結晶相鑑定 50
3-3-2. 粉末表面與薄膜橫截面影像分析 50
3-3-3. 化學成分與價數分析 51
3-3-4. 晶體繞射圖及微結構分析 51
3-3-5. 材料重量損失與相變分析 52
3-3-6. 材料鍵結分析 52
3-3-7. 電阻率量測 52
3-3-8. 分光光譜儀量測 53
3-3-9.橢圓偏光儀量測 53
第四章 結果與討論 54
4-1. 以熱注入法製備銫鎢青銅粉末 54
4-1-1. 晶體結構分析 54
4-1-2. 微結構分析 56
4-1-3. 材料鍵結分析 62
4-1-4. 化學成分與價數分析 62
4-1-5. 光學性質分析 65
4-2. 以低反應溫度法製備銫鎢青銅粉末 67
4-2-1. 相變及重量百分比分析 67
4-2-2. 晶體結構分析 67
4-2-3. 材料鍵結分析 68
4-2-4. 表面影像分析 73
4-2-5. 幾何密度分析 73
4-3. 以電子束蒸鍍機製備銫鎢青銅薄膜 76
4-3-1. 晶體結構分析 76
4-3-2. 化學成分與價數分析 79
4-3-3. 微結構分析 80
4-3-4. 薄膜表面與厚度分析 80
4-3-5. 光學性質分析 81
4-3-6. 電阻率分析 82
第五章 結論 90
第六章 參考文獻 92

參考文獻 [1] W. Qin, D. Zhang, D. Zhao, L. Wang, and K. Zheng, "Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles," Chemical Communications, vol. 46, pp. 2304-2306, 2010.
[2] B. Baloukas, J. M. Lamarre, and L. Martinu, "Electrochromic interference filters fabricated from dense and porous tungsten oxide films," Solar Energy Materials and Solar Cells, vol. 95, pp. 807-815, 2011/03/01/ 2011.
[3] L. Long, H. Ye, Y. Gao, and R. Zou, "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, vol. 136, pp. 89-97, 2014/12/31/ 2014.
[4] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Rönnow, et al., "Recent advances in electrochromics for smart windows applications," Solar Energy, vol. 63, pp. 199-216, 1998/10/01/ 1998.
[5] R. D. Rauh, "Electrochromic windows: an overview," Electrochimica Acta, vol. 44, pp. 3165-3176, 1999/05/01/ 1999.
[6] P. Tao, A. Viswanath, L. S. Schadler, B. C. Benicewicz, and R. W. Siegel, "Preparation and Optical Properties of Indium Tin Oxide/Epoxy Nanocomposites with Polyglycidyl Methacrylate Grafted Nanoparticles," ACS Applied Materials & Interfaces, vol. 3, pp. 3638-3645, 2011/09/28 2011.
[7] Y. Okuhara, T. Kato, H. Matsubara, N. Isu, and M. Takata, "Near-infrared reflection from periodically aluminium-doped zinc oxide thin films," Thin Solid Films, vol. 519, pp. 2280-2286, 2011/01/31/ 2011.
[8] H. Liu, X. Zeng, X. Kong, S. Bian, and J. Chen, "A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films," Applied Surface Science, vol. 258, pp. 8564-8569, 2012/09/01/ 2012.
[9] K. Adachi and T. Asahi, "Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles," Journal of Materials Research, vol. 27, pp. 965-970, Mar 2012.
[10] M. Skokan, W. G. Moulton, and R. C. Morris, Normal and Superconducting Properties of CsXWO3 vol. 20, 1979.
[11] Y. Sato, M. Terauchi, M. Mukai, T. Kaneyama, and K. Adachi, "High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region," Ultramicroscopy, vol. 111, pp. 1381-1387, 2011/07/01/ 2011.
[12] Y. Sato, M. Terauchi, and K. Adachi, "High energy-resolution electron energy-loss spectroscopy study on the near-infrared scattering mechanism of Cs0.33WO3 crystals and nanoparticles," Journal of Applied Physics, vol. 112, p. 074308, 2012.
[13] J.-D. GUO and M. S. WHITTINGHAM, "TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY," International Journal of Modern Physics B, vol. 07, pp. 4145-4164, 1993.
[14] B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, "Structural study of a new hexagonal form of tungsten trioxide," Journal of Solid State Chemistry, vol. 29, pp. 429-434, 1979/09/01/ 1979.
[15] C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, et al., "Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption," Nanoscale, vol. 5, pp. 6469-6478, 2013.
[16] F. Shi, J. X. Liu, X. L. Dong, Q. Xu, J. Y. Luo, and H. C. Ma, "Hydrothermal Synthesis of CsxWO3 and the Effects of N-2 Annealing on its Microstructure and Heat Shielding Properties," Journal of Materials Science & Technology, vol. 30, pp. 342-346, Apr 2014.
[17] H. Takeda and K. Adachi, "Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions," Journal of the American Ceramic Society, vol. 90, pp. 4059-4061, 2007.
[18] C. S. Guo, S. Yin, M. Yan, and T. Sato, "Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process," Journal of Materials Chemistry, vol. 21, pp. 5099-5105, 2011.
[19] J.-X. Liu, F. Shi, X.-L. Dong, Q. Xu, S. Yin, and T. Sato, "Nanocrystalline CsxWO3 particles: Effects of N2 annealing on microstructure and near-infrared shielding characteristics," Materials Characterization, vol. 84, pp. 182-187, 2013/10/01/ 2013.
[20] J. Liu, Y. Ando, X. Dong, F. Shi, S. Yin, K. Adachi, et al., Microstructure and electrical–optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing vol. 183, 2010.
[21] J.-X. Liu, F. Shi, X.-L. Dong, S.-H. Liu, C.-Y. Fan, S. Yin, et al., "Morphology and phase controlled synthesis of CsxWO3 powders by solvothermal method and their optical properties," Powder Technology, vol. 270, pp. 329-336, 2015.
[22] J. Liu, J. Luo, F. Shi, S. Liu, C. Fan, Q. Xu, et al., "Synthesis and characterization of F-doped Cs0.33WO3−xFx particles with improved near infrared shielding ability," Journal of Solid State Chemistry, vol. 221, pp. 255-262, 2015/01/01/ 2015.
[23] J. Liu, Q. Xu, F. Shi, S. Liu, J. Luo, L. Bao, et al., "Dispersion of Cs0.33WO3 particles for preparing its coatings with higher near infrared shielding properties," Applied Surface Science, vol. 309, pp. 175-180, 2014/08/01/ 2014.
[24] H. Yang, Z. Ping, G. Niu, H. Jiang, and Y. Long, "TG/DTG/DTA Study on Interaction between the Framework of High Silica Hydrophobic FAU Zeolite and Adsorbed Organics," Langmuir, vol. 15, pp. 5382-5388, 1999/08/01 1999.
[25] C.-T. Hsieh, H. Teng, W.-Y. Chen, and Y.-S. Cheng, "Synthesis, characterization, and electrochemical capacitance of amino-functionalized carbon nanotube/carbon paper electrodes," Carbon, vol. 48, pp. 4219-4229, 2010/12/01/ 2010.
[26] C. Guo, S. Yin, Q. Dong, and T. Sato, "Near-infrared absorption properties of RbxWO3 nanoparticles," CrystEngComm, vol. 14, pp. 7727-7732, 2012.
[27] K. Adachi, Y. Ota, H. Tanaka, M. Okada, N. Oshimura, and A. Tofuku, "Chromatic instabilities in cesium-doped tungsten bronze nanoparticles," Journal of Applied Physics, vol. 114, p. 194304, 2013.
[28] A. Gonçalves, J. Resende, A. C. Marques, J. V. Pinto, D. Nunes, A. Marie, et al., "Smart optically active VO2 nanostructured layers applied in roof-type ceramic tiles for energy efficiency," Solar Energy Materials and Solar Cells, vol. 150, pp. 1-9, 2016/06/01/ 2016.
[29] R. Baetens, B. P. Jelle, and A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review," Solar Energy Materials and Solar Cells, vol. 94, pp. 87-105, 2010/02/01/ 2010.
[30] E. Hammarberg and A. Roos, "Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance," Thin Solid Films, vol. 442, pp. 222-226, 2003/10/01/ 2003.
[31] G. Leftheriotis, P. Yianoulis, and D. Patrikios, "Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications," Thin Solid Films, vol. 306, pp. 92-99, 1997/08/01/ 1997.
[32] C. M. Lampert, "Chromogenic smart materials," Materials Today, vol. 7, pp. 28-35, 2004/03/01/ 2004.
[33] V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, "Gasochromic windows," Solar Energy Materials and Solar Cells, vol. 84, pp. 305-314, 2004/10/01/ 2004.
[34] Z. S. Guan, J. N. Yao, Y. A. Yang, and B. H. Loo, "Electrochromism of annealed vacuum-evaporated V2O5 films," Journal of Electroanalytical Chemistry, vol. 443, pp. 175-179, 1998/02/20/ 1998.
[35] A. Azens, L. Kullman, G. Vaivars, H. Nordborg, and C. G. Granqvist, "Sputter-deposited nickel oxide for electrochromic applications," Solid State Ionics, vol. 113-115, pp. 449-456, 1998/12/01/ 1998.
[36] P. Ashrit, Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films vol. 385, 2001.
[37] C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, et al., "Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process," Journal of Materials Chemistry, vol. 20, p. 8227, 2010.
[38] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, et al., "Nitrogen‐Doped Tungsten Oxide Nanowires: Low‐Temperature Synthesis on Si, and Electrical, Optical, and Field‐Emission Properties," Small, vol. 3, pp. 658-664, 2007.
[39] P. Roussel, P. Labbe, and D. Groult, Symmetry and twins in the monophosphate tungsten bronze series (P02)4(W03)2m (2 < or = m < or = 14) vol. 56 (Pt 3), 2000.
[40] S. Balaji, Y. Djaoued, A.-S. Albert, R. Z. Ferguson, and R. Brüning, "Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows," Chemistry of Materials, vol. 21, pp. 1381-1389, 2009/04/14 2009.
[41] J. Guo, X. Lu, C. Gao, and X. Hou, Effects of element A on the crystal structure of tungsten bronzes AxWO3 vol. 46, 2015.
[42] J. Guo, C. Dong, L. Yang, G. Fu, and H. Chen, "Crystal structure and electrical properties of CaxWO3 (0.01≤x≤0.15) prepared by hybrid microwave synthesis," Materials Research Bulletin, vol. 41, pp. 655-661, 2006/03/09/ 2006.
[43] J. Guo, C. Dong, L. Yang, G. Fu, and H. Chen, "Crystal structure and electrical properties of new tungsten bronzes: BxWO3 (0.01≤x≤0.08)," Materials Research Bulletin, vol. 42, pp. 1384-1389, 2007/07/03/ 2007.
[44] O. Schirmer, F., "PLENARY SESSIONSmall polaron aspects of defects in oxide materials," J. Phys. Colloques, vol. 41, pp. C6-479-C6-484, 1980.
[45] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials: Elsevier Science, 1995.
[46] S.-H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, A. W. Czanderna, and S. K. Deb, "Electrochromic coloration efficiency of a-WO3−y thin films as a function of oxygen deficiency," Applied Physics Letters, vol. 75, pp. 1541-1543, 1999.
[47] J. Y. Luo, S. Z. Deng, Y. T. Tao, F. L. Zhao, L. F. Zhu, L. Gong, et al., "Evidence of Localized Water Molecules and Their Role in the Gasochromic Effect of WO3 Nanowire Films," The Journal of Physical Chemistry C, vol. 113, pp. 15877-15881, 2009/09/10 2009.
[48] 吳民耀 and 劉威志, "表面電漿子理論與模擬," 物理雙月刊, vol. 28, pp. 486-496, 2006.
[49] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings: Springer, 1988.
[50] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, pp. 131-314, 2005/03/01/ 2005.
[51] N. W. Ashcroft and N. D. Mermin, Solid State Physics: Holt, Rinehart and Winston, 1976.
[52] H. A. Atwater, "The promise of plasmonics," SIGDA Newsl., vol. 37, pp. 1-1, 2007.
[53] J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Physical Review B, vol. 64, p. 235402, 11/08/ 2001.
[54] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003/01/01 2003.
[55] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: Wiley, 1983.
[56] X. Liang, "Chapter 19 - Transition from Tubes to Sheets—A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene A2 - Schulz, Mark J," in Nanotube Superfiber Materials, V. N. Shanov and Z. Yin, Eds., ed Boston: William Andrew Publishing, 2014, pp. 519-568.
[57] F. Davar, M. Salavati-Niasari, and Z. Fereshteh, "Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor," Journal of Alloys and Compounds, vol. 496, pp. 638-643, 2010/04/30/ 2010.
[58] J. Tang, X. Wang, L. Brzozowski, D. A. R. Barkhouse, R. Debnath, L. Levina, et al., "Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination," Advanced Materials, vol. 22, pp. 1398-1402, 2010.
[59] Q. Xu, J. X. Liu, F. Shi, J. Y. Luo, Y. Y. Jiang, and G. S. Liu, "Effects of Annealing in Different Atmosphere on the Near-Infrared Shielding Properties of CsxWO3 Particles," Advanced Materials Research, vol. 712-715, pp. 284-287, 2013.
[60] T. Eyassu, T.-J. Hsaio, and C.-T. Lin, "Facile solvothermal synthesis of NIR absorbing CsxWO3nanorods by benzyl alcohol route," Materials Research Express, vol. 2, p. 015016, 2015.
[61] J. Choi, K. Moon, I. Kang, S. Kim, P. J. Yoo, K. W. Oh, et al., "Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine," Chemical Engineering Journal, vol. 281, pp. 236-242, 2015.
[62] T. Jyothish, V. Sreeram, B. Rahel, T. Ryan, P. Trevor, D. Biswapriya, et al., "Large‐Scale, Hot‐Filament‐Assisted Synthesis of Tungsten Oxide and Related Transition Metal Oxide Nanowires," Small, vol. 3, pp. 890-896, 2007.
[63] D. Deniz, D. J. Frankel, and R. J. Lad, "Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition," Thin Solid Films, vol. 518, pp. 4095-4099, 2010/05/31/ 2010.
[64] D. Perednis and L. J. Gauckler, "Thin Film Deposition Using Spray Pyrolysis," Journal of Electroceramics, vol. 14, pp. 103-111, March 01 2005.
[65] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, and C. Sanjeeviraja, "Preparation and characterization of electron beam evaporated WO3 thin films," Optical Materials, vol. 29, pp. 679-687, 2007/02/01/ 2007.
[66] J. Zhang, X. L. Wang, X. H. Xia, C. D. Gu, Z. J. Zhao, and J. P. Tu, "Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers," Electrochimica Acta, vol. 55, pp. 6953-6958, 2010/09/30/ 2010.
[67] K. Aguir, C. Lemire, and D. B. B. Lollman, "Electrical properties of reactively sputtered WO3 thin films as ozone gas sensor," Sensors and Actuators B: Chemical, vol. 84, pp. 1-5, 2002/04/30/ 2002.
[68] K. J. Lethy, D. Beena, R. Vinod Kumar, V. P. Mahadevan Pillai, V. Ganesan, V. Sathe, et al., "Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique," Applied Physics A, vol. 91, pp. 637-649, June 01 2008.
[69] C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, "Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications," Journal of the American Chemical Society, vol. 123, pp. 10639-10649, 2001/10/01 2001.
[70] P. Shen, N. Chi, and K.-Y. Chan, "Morphology of electrodeposited WO3 studied by atomic force microscopy," Journal of Materials Chemistry, vol. 10, pp. 697-700, 2000.
[71] M. B. Rahmani, M. H. Yaacob, and Y. M. Sabri, "Hydrogen sensors based on 2D WO3 nanosheets prepared by anodization," Sensors and Actuators B: Chemical, vol. 251, pp. 57-64, 2017/11/01/ 2017.
[72] S. Takuto, Y. Kohei, and O. Akira, "Epitaxial growth of hexagonal tungsten bronze Cs x WO 3 films in superconducting phase region exceeding bulk limit," Applied Physics Express, vol. 9, p. 075801, 2016.
[73] S. Wataru, K. Kana, Y. Toshinobu, and H. Shin-ichi, "Synthesis of Highly Oriented Tungsten Bronze K(Pb 0.6 Ba 0.4 ) 2 Nb 5 O 15 Thin Films by the Chemical Solution Deposition Method," Japanese Journal of Applied Physics, vol. 37, p. 5215, 1998.
[74] J. V., N. Z., and Č. B., "Modelling and experimental investigations of thin filmsof Mg phosphorus‐doped tungsten bronzes obtainedby ultrasonic spray pyrolysis," Journal of Microscopy, vol. 232, pp. 623-628, 2008.
[75] 葛双双,张雯雯,李坤,徐涓,刘兰香,郑华,张弘, "余甘子核仁油的体外抗氧化活性及其作用机理," Journal Article, vol. 38, pp. 127-134, 2017.
[76] S.-C. Wang, R.-K. Chiang, and P.-J. Hu, "Morphological and phase control of tin oxide single-crystals synthesized by dissolution and recrystallization of bulk SnO powders," Journal of the European Ceramic Society, vol. 31, pp. 2447-2451, 2011/11/01/ 2011.
[77] 刘. 李. 杨儒, "非表面活性剂合成CeO_2介孔材料," 中国稀土学报, pp. 22-28.
[78] C. S. Long, H.-H. Lu, D.-F. Lii, and J.-L. Huang, "Effects of annealing on near-infrared shielding properties of Cs-doped tungsten oxide thin films deposited by electron beam evaporation," Surface and Coatings Technology, vol. 284, pp. 75-79, 2015/12/25/ 2015.
[79] A. Edukondalu, B. Kavitha, S. Rahman, A. Gupta, and K. S. Kumar, "Optical properties of amorphous Na2O-WO3-B2O3 thin films deposited by electron beam evaporation," Optik - International Journal for Light and Electron Optics, vol. 126, pp. 2163-2166, 2015/10/01/ 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw