進階搜尋


 
系統識別號 U0026-2607201713311700
論文名稱(中文) 圓柱向量雷射光束的產生與非線性動態行為
論文名稱(英文) Generation and nonlinear dynamics of cylindrical vector laser beam
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 105
學期 2
出版年 106
研究生(中文) 蔡尚妤
研究生(英文) Shang-Yu Tsai
學號 L76054027
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-魏明達
口試委員-徐旭政
口試委員-曾碩彥
口試委員-黃勝廣
中文關鍵字 圓柱向量光束  被動式Q開關  非線性動力學  雙波長雷射 
英文關鍵字 cylindrical vector beam  passively Q-switched  nonlinear dynamics  dual-wavelength laser 
學科別分類
中文摘要 本文主要在產生具圓柱向量偏振的雷射與研究其非線性動態行為,總共有兩部分的研究。第一部分用雙折射晶體Nd:GdVO4與Cr4+:YAG,經由共振腔設計產生被動式Q開關的方位角偏振脈衝雷射。提高泵源功率,系統會經由倍週期路徑進入混沌。在週期二,空間中的脈衝序列會隨著光束的方位角改變。在混沌範圍,脈衝序列具有時間與空間的混沌,而此時依然維持方位角偏振。第二部分的研究為產生雙波長的圓柱向量光束。使用擴散接合的Nd:YVO4/Nd:GdVO4晶體產生雙波長,且藉由共振腔設計產生方位角偏振。兩個雷射波長為1064.04 nm與1066.41 nm,分別由Nd:YVO4與Nd:GdVO4產生。
英文摘要 In this thesis, we generate the laser with cylindrical vector polarization and study the nonlinear dynamics. There are two experiments. In the first part, the passively Q-switched laser with azimuthally polarized is generated. When the pump power is increased, a period-doubling route to chaos is observed. At a period of two, the pulse trains are varied with azimuthal angles. The spatiotemporal chaos is observed under the invariant distribution of polarization. In the second part, a dual-wavelength laser with azimuthal polarization is achieved by using the diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal. The lasing wavelengths are 1064.04 nm and 1066.41 nm which are generated by Nd:YVO4 and Nd:GdVO4, respectively.
論文目次 摘要......................Ⅰ
SUMMARY..................Ⅱ
誌謝.....................Ⅵ
目錄....................Ⅷ
圖目錄....................Ⅹ
第一章 緒論................1
1.1 圓柱向量光束...........1
1.2 非線性動力學...........4
1.3 雙波長雷射.............6
1.4 研究動機與目的..........8
第二章 方位角偏振Q開關脈衝雷射的非線性動態行為...9
2.1 原理...................9
2.1.1 圓柱向量光束..........9
2.1.2 雙折射晶體產生的偏振態...................12
2.1.3 被動式Q開關的工作機制....................15
2.1.4 脈衝雷射的非線性動態行為.................18
2.2 實驗結果與討論............................26
2.2.1 實驗架構與模擬..........................26
2.2.2 雷射的基本特性..........................30
2.2.3 雷射的非線性動態行為.....................34
2.3 總結......................................48
第三章 利用擴散接合晶體產生雙波長方位角偏振光束...49
3.1 原理......................................49
3.1.1 擴散接合晶體.............................49
3.1.2 雙波長雷射...............................50
3.2 實驗結果與討論..............................52
3.2.1 實驗架構.................................52
3.2.2 雙波長雷射的基本特性......................54
3.3 總結.......................................61
第四章 結論與未來展望............................62
4.1 結論........................................62
4.2 未來展望....................................62
文獻參考資料.....................................63
附錄A 利用光空間調製器產生光學渦流.................70
A.1 設計相位調製圖形..............................70
A.2 光空間調製器的使用方法.........................72
A.3 整數與分數形拓樸電荷的光學渦流..................77
A.4 附錄文獻參考資料...............................80

參考文獻 [1] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009).
[2] K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603-2607 (2006).
[3] M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A. 86, 329-334 (2007).
[4] Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 337-3382 (2004).
[5] L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
[6] S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990).
[7] E. G. Churin, J. Hoßfeld, and T. Tschudi, “Polarization configurations with singular point formed by computer generated holograms,” Opt. Commun. 99, 13-17 (1993).
[8] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468-1470 (2007).
[9] D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266-267 (1972).
[10] J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14, 3304-3311 (2006).
[11] K.-C. Chang, T. Lin, and M.-D. Wei, “Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon,” Opt. Express 21, 16035-16042 (2013).
[12] M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization inYb:YAG thin-disk lasers,” Opt. Lett. 32, 3272-3274 (2007).
[13] J.-l. Li, K.-i. Ueda, L.-x. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+: YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2,” Opt. Express 16, 10841-10848 (2008).
[14] M. P. Thirugnanasambandam, Y. Senatsky, and K.-i. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19, 1905-1914 (2011).
[15] K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151-2153 (2006).
[16] J.-l. Li, K.-i. Ueda, M. Musha, L.-x. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686-2688 (2008).
[17] Z. Fang, K. Xia, Y. Yao, and J. Li, “Radially polarized and passively Q-switched Nd:YAG laser under annular-shaped pumping,” IEEE J. Sel. Top. Quantum Electron. 21, 1600406 (2015).
[18] K.-C. Chang, D.-L. Li, and M.-D. Wei, “Self-sustaining azimuthal polarization in a passively Q-switched Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 31, 382-386 (2014).
[19] 劉秉正, 非線性動力學與混沌基礎 (徐氏基金會, 1998)。
[20] E. N. Lorenz, “Deterministic non-periodic flow,” J. Atoms. Sci. 20, 130-141 (1963).
[21] M. Tachikawa, F.-L. Hong, K. Tanii, and T. Shimizu, “Deterministic chaos in passive Q-switching pulsation of a CO2 laser with saturable absorber,” Phys. Rev. Lett. 60, 2266-2268 (1988).
[22] J. J. Zayhowski, and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427-1429 (1994).
[23] D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng,“Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28, 325-327 (2003).
[24] S. P. Ng, D. Y. Tang, L. J. Qin, X. L. Meng, and Z. J. Xiong, “Period-doubling route to chaos in diode-pumped passively Q-switched Nd:GdVO4 and Nd:YVO4 lasers,” Int. J. Bifur. Chaos 16, 2689-2696 (2006).
[25] M. Kovalsky, and A. Hnilo, “Chaos in the pulse spacing of passive Q-switched all-solid-state lasers,” Opt. Lett. 35, 3498-3500 (2010).
[26] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054-1057 (2007).
[27] J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, “Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A 87, 035802 (2013).
[28] N. M. Granese, A. Lacapmesure, M. B. Agüero, M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, “Extreme events and crises observed in an all-solid-state laser with modulation of losses,” Opt. Lett. 41, 3010-3012 (2016).
[29] C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce,“Optical rogue waves in an all-solid-state laser with a saturable absorber: importance of the spatial effects,”J. Opt. 15, 064004 (2013).
[30] C. R. Bonazzola, A. A. Hnilo, M. G. Kovalsky, and J. R. Tredicce, “Features of the extreme events observed in all-solid-state laser with a saturable absorber,” Phys. Rev. A 92, 053816 (2015).
[31] K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86, 65-70 (2007).
[32] Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70, 475-478 (2000).
[33] Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett. 30, 2107-2109 (2005).
[34] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39, 1477-1480 (2014).
[35] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2-4F11/2 Transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21, 56-62 (2015).
[36] Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,”Opt. Mater. Express 5, 2136-2141 (2015).
[37] Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, “Dual-wavelength intracavity OPO with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” IEEE Photon. Technol. Lett. 28, 1123-1126 (2016).
[38] P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35, 3979-3981 (2010).
[39] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266-S280 (2005).
[40] C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace,“Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55, 4825-4838 (2010).
[41] D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973-4978 (2010).
[42] A. E. Siegman, Lasers (University Science, Mill Valley, CA., 1986).
[43] J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995).
[44] K. Spariosu, A. V. Shestakov, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG–Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814-816 (1993).
[45] A. Szabo, and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562-1566 (1965).
[46] Y. Bai, N. Wu, J. Zhang, J. Li, S. Li, J. Xu, and P. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt. 36, 2468-2472 (1997).
[47] C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70, 471-474 (2000).
[48] Y.-F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580-586 (2001).
[49] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A 45, 3403-3411 (1992).
[50] J. C. Sprott, and G. Rowlands, Chaos Data Analyzer: The Professional Version (Physics Academic Software, 1998).
[51] M. Tsunekane, N. Taguchi, and H. Inaba, “High power operation of diode-end-pumped Nd:YVO4 laser using composite rod with undoped end,” Electron. Lett. 32, 40-42 (1996).
[52] M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9-18 (1997).
[53] R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24, 393-399 (2003).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw