進階搜尋


 
系統識別號 U0026-2607201711534900
論文名稱(中文) 飲食限制、蛋胺酸限制及耐力訓練對於成年雄性大鼠能量代謝的影響
論文名稱(英文) The effects of dietary restriction, methionine restriction and endurance exercise on energy metabolism in male adult rats
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 105
學期 2
出版年 106
研究生(中文) 吳為淳
研究生(英文) Wei-Chun Wu
學號 RB6044027
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-黃滄海
共同指導教授-郭余民
口試委員-楊艾倫
中文關鍵字 甲硫胺酸限制  飲食限制  運動  能量代謝 
英文關鍵字 methionine restriction  dietary restriction  exercise  energy metabolism 
學科別分類
中文摘要 摘要
目的:探討耐力運動、甲硫胺酸限制飲食以及飲食限制之介入對大鼠血中能量代謝指標及肝臟組織與脂肪組織形態上的影響。
方法: 採週齡26週之雄性Sprague-Dawley (SD) 大鼠為研究對象進行為期9週不同的飲食介入與運動介入。所有大鼠依體重的分佈,將大鼠以12隻分為一組,共分為(1) 控制組(CON):自由取食不運動組;(2) 飲食限制組40% (DR40%):總飲食攝取量少於CON組40%;(3) 飲食限制組20% (DR20%):總攝取量少於CON組20%;(4) 甲硫胺酸限制組 (MR):飲食中甲硫氨酸含量比CON組少80%;(5) 耐力運動組(EXE):每週接受耐力跑步訓練5天,每天1小時;(6) 口服pioglitazone(10/mg / kg)治療組 (PIO):pioglitazone為糖尿病處方藥之一,本組為本研究之正向控制組。在8週介入後,實驗動物進行腹膜內葡萄糖注射之葡萄糖耐受性試驗(IPGTT),分析血清葡萄糖與胰島素敏感度;在9週介入後,所有大鼠將進行麻醉後斷頭犧牲,所採集血液進行三酸甘油酯、膽固醇、脂聯素、瘦體素與成纖維細胞成長因子21之分析,而肝臟、附睾脂肪組織則進行組織形態分析。
結果:在體重方面,DR40%,DR20%和EXE組體重顯著低於CON組。在IPGTT分析,DR40%、DR20%、MR、EXE和PIO組胰島素及葡萄糖分別在各個採血時間點以及各時間點曲線下面積總合呈現較低的數值或統計上顯著低於CON組的結果。在其它血液指標中,MR和EXE組的血清總膽固醇顯著低於CON組;DR40%和PIO組有顯著的低於CON組的三酸甘油脂;在血清脂聯素中,EXE組顯著低於CON組,而MR組和PIO組則顯著的高於CON組;在血清瘦素中, DR40%、DR20%和EXE組顯著低於CON組;在血清成纖維細胞成長因子21中,MR組顯著的高於CON組,而DR40%和EXE組則顯著的低於CON組。在組織組織形態測量方面,附睾脂肪組織中脂肪細胞密度結果為EXE組顯著低於CON組,肝臟組織的脂肪細胞密度為DR40%和PIO組顯著低於CON組。
結論:本研究結果顯示,DR、MR和EXE的介入能有提高胰島素敏感度或降低身體質量的效益。而在EXE、MR和DR等組別所呈現之不同的血液指標樣貌意指著不同介入方法在能量代謝調節機制上的不同,進而對於附睾脂肪組織及肝臟組織形態產生不同的影響。
英文摘要 Abstract
Aim: To investigate the effects of endurance exercise (EXE), methionine restriction (MR) and dietary restriction (DR) on serum metabolism related markers and histomorphometry in liver and fat tissues.
Methods: Nine-week of various dietary or exercise interventions were applied to adult male Sprague Dawley (SD) rats (26-wk-old). All animals were body-weight matched and assigned to one of the following groups (n/=/12 for each group): 1) CON, sedentary control group, 2) DR40%, dietary restriction group with 40% lower in total dietary consumption than the CON group, 3) DR20%, dietary restriction with 20% lower in total dietary consumption than the CON group, 4) MR, diet with 80% lower in methionine content than the CON group, 5) EXE, endurance exercise training group, 6) PIO, a group treated with pioglitazone (10/mg/kg) through gavage, which were served as a positive control intervention. After 8 weeks of interventions, eight animals of each group were randomly selected for intraperitoneal glucose tolerance test (IPGTT). After 9 weeks of interventions, all rats were sacrificed with decapitation under deep anesthesia. Blood samples were collected for serum insulin, glucose, triglycerides (TG),cholesterol, leptin, adiponectin and fibroblast growth factor 21 (FGF21). Liver and epididymis fat tissue were collected for histomorphometric analyses.
Results: In body weight, the DR40%, DR20%, and EXE groups showed significantly lower body weight compared to the CON group. In IPGTT, serum insulin and glucose of different time points, and also, the area under curve (AUC) of insulin and glucose in the DR40%, DR20%, MR, EXE and PIO groups were significantly or marginally lower than the CON group. In other serum markers, the MR and EXE groups showed significantly lower serum cholesterol as compared to the CON groups. In TG, the DR40% and PIO groups showed significantly lower values as compared to CON group. In serum adiponectin, the EXE group showed significantly lower value whereas the MR and PIO groups showed significantly higher values as compared to CON group. In serum leptin, the DR40%, DR20% and EXE groups showed significantly lower values as compared to the CON group. In serum FGF21, the MR group showed significantly high value whereas the DR40% and EXE groups showed significantly lower values as compared to the CON group. In tissue histomorphometry, epididymis fat adipocyte density were significantly lower in the EXE group as compared to the CON group. Liver adipocyte density were significantly lower in the DR40% and PIO groups compared to CON group.
Conclusion: Our results indicate that DR, MR, and EXE effectively reduced body weight and/or enhanced insulin sensitivity. Exercise, MR and DR benefit the whole metabolism system by showing different profile in various serum markers. For epididymis fat histomorphomertry, EXE group showed effect as compared to CON group.
論文目次 Table of Contents
摘要 I
Abstract III
致謝 V
List of Table VIII
List of Figures IX
Abbreviations X
Introduction 1
Research background 1
Purposes of this study 5
Materials and Methods 6
1.Animals 6
2.Experimental designs 6
3.Sample preparations and analyses 10
(1) Animal sacrifice and sample collections. 10
(2) Serum markers assays: 10
(3) Tissue histomorphometry: 11
4. Statistical analysis 13
Results 14
Body weight and fat tissue weight 14
IPGTT 17
Serum markers 22
Serum cholesterol and triglycerides 22
Serum adiponectin 23
Serum leptin 24
Serum FGF21 25
Tissue histomorphometry 26
Epididymis fat adipocyte density 26
Liver adipocyte density 27
Discussion 29
Conclusion 33
References 34
Appendix 42
文獻探討 42
第一節 耐力運動、 飲食限制及蛋胺酸限制的能量代謝觀 42
一、引言 42
二、運動對胰島素敏感度、葡萄糖敏感度與血脂質及膽固醇之影響 43
三、飲食限制對胰島素敏感度、葡萄糖敏感度與血脂質之影響 44
四、甲硫胺酸限制對胰島素敏感度、葡萄糖敏感度與血脂質之影響 44
第二節 脂肪與肝臟組織形態觀 46
一、引言 46
二、運動對肝臟與脂肪組織形態的影響 46
三、飲食限制對肝臟與脂肪組織型態的影響 47
四、甲硫胺酸限制對肝臟與脂肪組織形態的影響 47
第三節 小結 48
參考文獻 References
Ables, G. P., Ouattara, A., Hampton, T. G., Cooke, D., Perodin, F., Augie, I., & Orentreich, D. S. (2015). Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia. Scientific Reports, 5.
Adolfsson, J. (1986). The time dependence of training‐induced increase in skeletal muscle capillarization and the spatial capillary to fibre relationship in normal and neovascularized skeletal muscle of rats. Acta Physiologica Scandinavica, 128(2), 259-266.
Barzilai, R. M., & Weindruch, R. (2012). The caloric restriction paradigm: implications for healthy human aging. American Journal of Human Biology, 24(2), 101-106.
Anthony, T. G., McDaniel, B. J., Byerley, R. L., McGrath, B. C., Cavener, D. R., McNurlan, M. A., & Wek, R. C. (2004). Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. Journal of Biological Chemistry, 279(35), 36553-36561.
Attipoe, S., Park, J. Y., Fenty, N., Phares, D., & Brown, M. (2008). Oxidative stress levels are reduced in postmenopausal women with exercise training regardless of hormone replacement therapy status. Journal of Women and Aging, 20(1-2), 31-45.
Aydin, C., Jarema, K., Phillips, P., & Gordon, C. (2015). Caloric restriction in lean and obese strains of laboratory rat: effects on body composition, metabolism, growth and overall health. Experimental Physiology, 100(11), -1297.
Bajaj, M., Suraamornkul, S., Piper, P., Hardies, L. J., Glass, L., Cersosimo, E.,& DeFronzo, R. A. (2004). Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. Journal of Clinical Endocrinology & Metabolism, 89(1), 200-206.
Barzilai, N., Huffman, D. M., Muzumdar, R. H., & Bartke, A. (2012). The critical role of metabolic pathways in aging. Diabetes, 61(6), 1315-1322.
Berleze, K. J., Muller, A. P., Schweigert, I. D., Longoni, A., Sordi, F., de Assis, A. M.,& Perry, M. L. (2009). Gestational and postnatal low protein diet alters insulin sensitivity in female rats. Experimental Biology and Medicine (Maywood, N.J.), 234(12), 1437-1444.
Bogardus, C., Lillioja, S., Stone, K., & Mott, D. (1984). Correlation between muscle glycogen synthase activity and in vivo insulin action in man. Journal of Clinical Investigation, 73(4), 1185.
Braun, B., Zimmermann, M. B., & Kretchmer, N. (1995). Effects of exercise intensity on insulin sensitivity in women with non-insulin-dependent diabetes mellitus. Journal of Applied Physiology, 78(1), 300-306.
Campbell, P. T., Gross, M. D., Potter, J. D., Schmitz, K. H., Duggan, C., McTiernan, A., & Ulrich, C. M. (2010). Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Medicine and Science in Sports and Exercise, 42(8), 1448-1453.
Cavuoto, P., & Fenech, M. F. (2012). A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treatment Reviews, 38(6), 726-736.
Cefalu, W. T., Wang, Z. Q., Bell-Farrow, A. D., Collins, J., Morgan, T., & Wagner, J. D. (2004). Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 59(10), B1007-B1014.
Charlton, M. (2009). Liver transplantation for nonalcoholic fatty liver disease. In C. Mina, S., Adam, T., Mazen, A., Naim, A. (Eds.), Liver Transplantation (pp. 169-190): Springer.
Coffey, V. G., & Hawley, J. A. (2007). The molecular bases of training adaptation. Sports Medicine, 37(9), 737-763.
Conde-Aguilera, J. A., Lefaucheur, L., Tesseraud, S., Mercier, Y., Le Floc’h, N., & van Milgen, J. (2016). Skeletal muscles respond differently when piglets are offered a diet 30% deficient in total sulfur amino acid for 10 days. European Journal of Nutrition, 55(1), 117-126.
Coskun, T., Bina, H. A., Schneider, M. A., Dunbar, J. D., Hu, C. C., Chen, Y., Kharitonenkov, A. (2008). Fibroblast growth factor 21 corrects obesity in mice. Endocrinology, 149(12), 6018-6027.
Couillard, C., Després, J.-P., Lamarche, B., Bergeron, J., Gagnon, J., Leon, A. S., Bouchard, C. (2001). Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(7), 1226-1232.
Deck, C. A., Honeycutt, J. L., Cheung, E., Reynolds, H. M., & Borski, R. J. (2017). Assessing the Functional Role of Leptin in energy Homeostasis and the Stress Response in vertebrates. Frontiers in Endocrinology, 8, 63.
Despres, J.-P., Moorjani, S., Lupien, P. J., Tremblay, A., Nadeau, A., & Bouchard, C. (1990). Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 10(4), 497-511.
Diez, J. J., & Iglesias, P. (2003). The role of the novel adipocyte-derived hormone adiponectin in human disease. European Journal of endocrinology, 148(3), 293-300.
Ducimetiere, P., Richard, J., & Cambien, F. (1985). The pattern of subcutaneous fat distribution in middle-aged men and the risk of coronary heart disease: the Paris Prospective Study. International Journal of Obesity, 10(3), 229- 240.
Fletcher, J. A., Meers, G. M., Laughlin, M. H., Ibdah, J. A., Thyfault, J. P., & Rector, R. S. (2012). Modulating fibroblast growth factor 21 in hyperphagic OLETF rats with daily exercise and caloric restriction. Applied Physiology, Nutrition, and Metabolism, 37(6), 1054-1062.
Fluckey, J. D., Hickey, M. S., Brambrink, J. K., Hart, K. K., Alexander, K., & Craig, B. W. (1994). Effects of resistance exercise on glucose tolerance in normal and glucose-intolerant subjects. Journal of Applied Physiology, 77(3), 1087- 1092.
Fujioka, S., Matsuzawa, Y., Tokunaga, K., Kawamoto, T., Kobatake, T., Keno, Y., Tarui, S. (1991). Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. International Journal of Obesity, 15(12), 853-859.
Gietzen, D. W. (1993). Neural mechanisms in the responses to amino acid deficiency. JOURNAL OF NUTRITION-BALTIMORE AND SPRINGFIELD THEN BETHESDA-, 123, 610-610.
Gietzen, D. W., Erecius, L. F., & Rogers, Q. R. (1998). Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. The Journal of Nutrition, 128(4), 771-781.
Grounds, M. (2014). Quantification of histopathology in Haemotoxylin and Eosin stained muscle sections. Treat NMD. Neuromuscular network. DMD_M, 1(007), 1-13.
Guo, F., & Cavener, D. R. (2007). The GCN2 eIF2α kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell metabolism, 5(2), 103-114.
Gwinup, G. (1975). Effect of exercise alone on the weight of obese women. Archives of Internal Medicine, 135(5), 676-680.
Hallsworth, K., Fattakhova, G., Hollingsworth, K. G., Thoma, C., Moore, S., Taylor, R., Trenell, M. I. (2011). Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. 60(9):1278-83.
Hasek, B. E., Boudreau, A., Shin, J., Feng, D., Hulver, M., Van, N. T.,
Wanders, D. (2013). Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes, 62(10), 3362-3372.
Hasek, B. E., Stewart, L. K., Henagan, T. M., Boudreau, A., Lenard, N. R., Black, C., Plaisance, E. P. (2010). Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 299(3), R728-R739.
Heilbronn, L., Noakes, M., & Clifton, P. (2001). Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(6), 968-970.
Hersey, W. C., Graves, J. E., Pollock, M. L., Gingerich, R., Shireman, R. B., Heath, G. W., Hagberg, J. M. (1994). Endurance exercise training improves body composition and plasma insulin responses in 70-to 79-year-old men and women. Metabolism: Clinical and Experimental, 43(7), 847-854.
Hickman, I., Clouston, A., Macdonald, G., Purdie, D., Prins, J., Ash, S., Powell, E. (2002). Effect of weight reduction on liver histology and biochemistry in patients with chronic hepatitis C. Gut, 51(1), 89-94.
Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. Journal of Bone and Mineral Metabolism, 26(4), 350-357.
Huang, T. H., Lewis, J. L., Lin, H. S., Kuo, L. T., Mao, S. W., Tai, Y. S., Yang, R. S. (2014). A methionine-restricted diet and endurance exercise decrease bone mass and extrinsic strength but increase intrinsic strength in growing male rats. Journal of Nutrition, 144(5), 621-630.
Huang, T. H., Su, I. H., Lewis, J. L., Chang, M. S., Hsu, A. T., Perrone, C. E., & Ables, G. P. (2015). Effects of methionine restriction and endurance exercise on bones of ovariectomized rats: a study of histomorphometry, densitometry, and biomechanical properties. J Appl Physiol (1985), 119(5), 517-526.
Huang, Z., Xu, A., & Cheung, B. M. (2017). The Potential Role of Fibroblast Growth Factor 21 in Lipid Metabolism and Hypertension. Current Hypertension Reports, 19(4), 28.
Kahn, B. B., & Flier, J. S. (2000). Obesity and insulin resistance. The Journal of Clinical Investigation, 106(4), 473-481.
Kang, L., Chen, C. H., Cheng, Y. C., Chang, C. H., Lee, C. T., Chang, J. K., Chang, F. M. (2012). Glucosamine-induced insulin resistance in ovariectomized rats is relevant to decreasing the expression of glucose transport protein subtype 4 in the skeletal muscle and in increasing the size of pancreatic islets. Menopause, 19(5), 496-502.
Kemnitz, J. W., Roecker, E. B., Weindruch, R., Elson, D. F., Baum, S. T., & Bergman, R. N. (1994). Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. American Journal of Physiology- Endocrinology And Metabolism, 266(4), E540-E547.
Kern, P. A., Di Gregorio, G. B., Lu, T., Rassouli, N., & Ranganathan, G. (2003). Adiponectin expression from human adipose tissue. Diabetes, 52(7), 1779- 1785.
Koehnle, T. J., Russell, M. C., & Gietzen, D. W. (2003). Rats rapidly reject diets deficient in essential amino acids. The Journal of Nutrition, 133(7), 2331- 2335.
Lane, M. A., Ball, S. S., Ingram, D. K., Cutler, R. G., Engel, J., Read, V., & Roth, G. S. (1995). Diet restriction in rhesus monkeys lowers fasting and glucose- stimulated glucoregulatory end points. American Journal of Physiology- Endocrinology And Metabolism, 268(5), E941-E948.
Larsson, B., Svärdsudd, K., Welin, L., Wilhelmsen, L., Björntorp, P., & Tibblin, G. (1984). Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. British Medical Journal (Clinical Research Ed.), 288(6428), 1401-1404.
Leon, A. S., Conrad, J., Hunninghake, D. B., & Serfass, R. (1979). Effects of a vigorous walking program on body composition, and carbohydrate and lipid metabolism of obese young men. The American Journal of Clinical Nutrition, 32(9), 1776-1787.
Lespessailles, E., Jaffre, C., Beaupied, H., Nanyan, P., Dolleans, E., Benhamou, C., & Courteix, D. (2009). Does exercise modify the effects of zoledronic acid on bone mass, microarchitecture, biomechanics, and turnover in ovariectomized rats? Calcified Tissue International, 85(2), 146-157.

Lev-Ran, A. (1998). Mitogenic factors accelerate later-age diseases: insulin as a paradigm. Mechanisms of Ageing and Development, 102(1), 95-113.
Lin, Y., Jan, M.-S., Tsai, T.-J., & Chen, H. (1995). Immunomodulatory effects of acute exercise bout in sedentary and trained rats. Medicine and Science in Sports and Exercise, 27(1), 73-78.
Lin, Z., Tian, H., Lam, K. S., Lin, S., Hoo, R. C., Konishi, M., Xu, A. (2013). Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell metabolism, 17(5), 779- 789.
Lopez-Torres, M., & Barja, G. (2008). Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochimica et Biophysica Acta, 1780(11), 1337-1347.
Maffei, M., Halaas, J., Ravussin, E., Pratley, R., Lee, G., Zhang, Y., Ranganathan, S. (1995). Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine, 1(11), 1155-1161.
Malloy, V. L., Krajcik, R. A., Bailey, S. J., Hristopoulos, G., Plummer, J. D., & Orentreich, N. (2006). Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell, 5(4), 305-314.
Martin, B., Ji, S., Maudsley, S., & Mattson, M. P. (2010). "Control" laboratory rodents are metabolically morbid: why it matters. Proceedings of the National Academy of Sciences of the United State of America, 107(14), 6127-6133.
Masoro, E. J., McCarter, R. J., Katz, M. S., & McMahan, C. A. (1992). Dietary restriction alters characteristics of glucose fuel use. Journal of Gerontology, 47(6), B202-B208.
McCarty, M. F., Barroso-Aranda, J., & Contreras, F. (2009). The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Medical Hypotheses, 72(2), 125-128.
Miller, J. P., Pratley, R. E., Goldberg, A. P., Gordon, P., Rubin, M., Treuth, M., Hurley, B. (1994). Strength training increases insulin action in healthy 50-to 65-yr-old men. Journal of Applied Physiology, 77(3), 1122-1127.
Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., & Smith-Wheelock, M. (2005). Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell, 4(3), 119- 125.
Ohlson, L. O., Larsson, B., Svärdsudd, K., Welin, L., Eriksson, H., Wilhelmsen, L., Tibblin, G. (1985). The influence of body fat distribution on the incidence of diabetes mellitus: 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes, 34(10), 1055-1058.
Orentreich, N., Matias, J. R., DeFelice, A., & Zimmerman, J. A. (1993). Low methionine ingestion by rats extends life span. Journal of Nutrition, 123(2), 269-274.
Orentreich, N., Matias, J. R., DeFelice, A., & Zimmerman, J. A. (1993). Low methionine ingestion by rats extends life span. The Journal of Nutrition, 123(2), 269.
Perrone, C. E., Mattocks, D. A., Hristopoulos, G., Plummer, J. D., Krajcik, R. A., & Orentreich, N. (2008). Methionine restriction effects on 11β-HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue. Journal of Lipid Research, 49(1), 12-23.
Plaisance, E. P., Greenway, F. L., Boudreau, A., Hill, K. L., Johnson, W. D., Krajcik, R. A., Gettys, T. W. (2011). Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism, 96(5), E836-E840.
Poehlman, E. T. (1989). A review: exercise and its influence on resting energy metabolism in man. Medicine and Science in Sports and Exercise, 21(5), 515-525.
Reaven, G. M. (1997). Role of insulin resistance in human disease. Nutrition, 1(13), 65.
Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., & Zimmerman, J. A. (1994). Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB Journal, 8(15), 1302-1307.
Richie, J. P., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., & Zimmerman, J. (1994). Methionine restriction increases blood glutathione and longevity in F344 rats. The FASEB Journal, 8(15), 1302-1307.
Rinella, M. E. (2015). Nonalcoholic fatty liver disease: a systematic review. JAMA, 313(22), 2263-2273.
Romijn, J., Coyle, E., Sidossis, L., Gastaldelli, A., Horowitz, J., Endert, E., & Wolfe, R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology-Endocrinology And Metabolism, 265(3), E380-E391.
Ross, R., Rissanen, J., Pedwell, H., Clifford, J., & Shragge, P. (1996). Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. Journal of Applied Physiology, 81(6), 2445-2455.
Roth, L. W., & Polotsky, A. J. (2012). Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas, 71(4), 315-319.
Roth, L. W., & Polotsky, A. J. (2012). Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas, 71(4), 315-319.
Sanyal, A. J. (2002). AGA technical review on nonalcoholic fatty liver disease. Gastroenterology, 123(5), 1705-1725.
Schafer, M. J., White, T. A., Evans, G., Tonne, J. M., Verzosa, G. C., Stout, M. B., Jensen, M. D. (2016). Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes, 65(6), 1606-1615.
Sengupta, P. (2013). The laboratory rat: relating its age with human's. International Journal of Preventive Medicine, 4(6).
Shamsoddini, A., Sobhani, V., Chehreh, M. E. G., Alavian, S. M., & Zaree, A. (2015). Effect of aerobic and resistance exercise training on liver enzymes and hepatic fat in Iranian men with nonalcoholic fatty liver disease. Hepatitis monthly, 15(10).
Shulman, G. I., Rothman, D. L., Jue, T., Stein, P., DeFronzo, R. A., & Shulman, R. G. (1990). Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. New England Journal of Medicine, 322(4), 223- 228.
Smutok, M., Reece, C., Kokkinos, P., Farmer, C., Dawson, P., De Vane, J., Hurley, B. (1994). Effects of exercise training modality on glucose tolerance in men with abnormal glucose regulation. International Journal of Sports Medicine, 15(06), 283-289.
Solomon, T. P., Haus, J. M., Kelly, K. R., Cook, M. D., Filion, J., Rocco, M., Kirwan, J. P. (2010). A low–glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose- dependent insulinotropic polypeptide responses in obese, prediabetic humans. The American Journal of Clinical Nutrition, 92(6), 1359-1368.
Solomon, T. P., Haus, J. M., Kelly, K. R., Cook, M. D., Riccardi, M., Rocco, M., Kirwan, J. P. (2009). Randomized trial on the effects of a 7-d low-glycemic diet and exercise intervention on insulin resistance in older obese humans. The American Journal of Clinical Nutrition, 90(5), 1222-1229.
Tremblay, A., Després, J.-P., & Bouchard, C. (1985). The effects of exercise- training on energy balance and adipose tissue morphology and metabolism. Sports Medicine, 2(3), 223-233.
Ueno, T., Sugawara, H., Sujaku, K., Hashimoto, O., Tsuji, R., Tamaki, S., Tanikawa, K. (1997). Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. Journal of Hepatology, 27(1), 103-107.
Wallberg-Henriksson, H., Constable, S., Young, D., & Holloszy, J. (1988). Glucose transport into rat skeletal muscle: interaction between exercise and insulin. Journal of Applied Physiology, 65(2), 909-913.
Weindruch, R., & Walford, R. L. (1988). Retardation of aging and disease by dietary restriction: CC Thomas.
Wieczorek-Baranowska, A., Nowak, A., Michalak, E., Karolkiewicz, J., Pospieszna, B., Rutkowski, R., Pilaczynska-Szczesniak, L. (2011). Effect of aerobic exercise on insulin, insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in overweight and obese postmenopausal women. Journal of Sports Medicine and Physical Fi ness, 51(3), 525-532.
Young, D. A., Wallberg-Henriksson, H., Sleeper, M., & Holloszy, J. (1987). Reversal of the exercise-induced increase in muscle permeability to glucose. American Journal of Physiology-Endocrinology And Metabolism, 253(4), E331-E335.
Zisser, H., Gong, P., Kelley, C. M., Seidman, J. S., & Riddell, M. C. (2011). Exercise and diabetes. International Journal of Clinical Practice. Supplement(170), 71-75. doi:10.1111/j.1742-1241.2010.02581.x
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw