進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201621354000
論文名稱(中文) 蓋岩層對二氧化碳封存阻絕性之定量評估
論文名稱(英文) A quantitative evaluation for the sealing capability of caprock in CO2 storage
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 管培勛
研究生(英文) Pei-Shun Kuan
學號 N46024060
學位類別 碩士
語文別 英文
論文頁數 71頁
口試委員 口試委員-李明旭
口試委員-倪春發
口試委員-謝秉志
指導教授-徐國錦
中文關鍵字 二氧化碳封存  場址鑑定  指標克利金  蓋岩層  TOUGH2 
英文關鍵字 CO2 storage  Site characterization  Indicator kriging  Cap rock  TOUGH2 
學科別分類
中文摘要 二氧化碳地質封存技術發展的主要目標,在於尋找適合的封存地點,注儲適量之二氧化碳氣體,藉由構造封存、溶解封存、礦化封存與殘餘氣封存封存將二氧化碳於地層內。而蓋岩層的阻絕效果為二氧化碳封存技術初期執行是否成功之重要關鍵。位於台灣西北沿海的Y場址有良好的沉積環境,是具有潛力發展二氧化碳地質封存的場址。本研究使用類別型指標克利金,針對Y場址的11口岩心柱狀圖資料,蓋岩層中的岩性可依據前人研究將頁岩歸類為細材質,其餘岩性歸類為粗材質,接著進行該場址蓋岩層的空間連續性分析。分析結果得知水平方向連續性最大為150公尺,垂直方向約為2公尺,利用此結果產生指標克利金場。本研究假設三種地質連續性情況,情境一為水平方向連續性150公尺並且有塊金值0.056,情境二為水平方向連續性50公尺並且有塊金值0.056,情境三為水平方向連續性150公尺但沒有塊金值。在垂直方向上連續性均為2公尺也有塊金值0.056。本研究使用TOUGH2-ECO2N數值模擬軟體,模擬並比較三個情境對二氧化碳移棲所造成的影響。模擬結果顯示,若以頂部網格的平均溶解相二氧化碳質量分率0.05定為標準,則情境二會花最少的時間穿過蓋岩層。若以頂部網格的平均超臨界二氧化碳飽和度定為0.2定為標準,則情境一、二、三所需時間為527年、506年、540年,差異相當顯著。另外,當超臨界二氧化碳經過粗材質區域時,會形成”高飽和度區”。在蓋岩層中,每個網格的壓力變化均會急遽上升接著下降接著再上升的情況,初期的上升主要是受到壓力波動的影響,之後便趨於平緩而下降,最後因為超臨界二氧化碳進入導致壓力上升。離底部越遠的網格,整個壓力的上升與下降情況將會相對越不明顯。
英文摘要 The aim of CGS is to inject collected CO2 into deep geologic formation to reduce CO2 amount emitted to the atmosphere. There are several mechanisms trapping CO2 such as structural trapping, residual trapping, solubility trapping, and mineral trapping. The sealing capacity of cap rock is the key of success for CGS. Y site is a potential CGS site and located at northwest Taiwan with a sedimentary environment. In this study, indicator kriging is used for 11 borehole data to analyze the geological continuity of cap rock. The shale lithiface can be categorized as rock type 1 while other lithiface can be categorized as rock type 2. The results show that the range of the cap rock in the horizontal direction is 150 m at most and the range in vertical direction is around 2 m. Three scenarios are assumed in this study. The first is with a range of 150 m and a nugget of 0.056 in horizontal direction. Second one is with a range of 5 m and a nugget of 0.056 in horizontal direction. Third one is with a range of 150 m without nugget in horizontal direction. All scenarios are with a range of 2 m and a nugget of 0.056 in vertical direction. TOUGH2-ECO2N is used to perform numerical modeling to study the effect of spatial continuity on CO2 migration. The results show that if the threshold of dissolved CO2 mass fraction is assigned to be 0.056 at top of cap rock, scenarios 2 takes the shortest time to penetrate the cap rock. No significant difference in the dissolved CO2 migration. If the threshold of supercritical CO2 saturation is assigned to be 0.17 at top of cap rock, scenario1, 2 and 3 take 448 years, 400 years and 491 years, respectively. The difference in the supercritical CO2 is significant. Moreover, supercritical CO2 forms locally high saturation zones when migrates to the rock type 2. The pressure difference for each mesh in the cap rock will dramatically rise up due to the pressure propagation and drop down and then rise up again because of entry of supercritical CO2. The far the mesh of location is, the changes of pressure are sharper and earlier.
論文目次 Abstract I
摘要 III
誌謝 IV
Contents V
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Flow Chart 14
Chapter 2 Methodology 16
2.1 Introduction to Geostatistic methodes 16
2.2 Geostatistic theory 16
2.3 Indicator Kriging 20
2.4 Data Discretization 21
2.5 Data Transformation 22
2.6 Movement of CO2 23
2.7 Introduction to TOUGH2 27
Chapter 3 Site Description 33
3.1 Location and geological structure 33
3.2 Lithology category 34
3.3 Indicator analysis 35
3.3.1 Transformation results 35
3.3.2 Variogram analysis 36
Chapter 4 Numerical modeling of CO2 migration 40
4.1 Numerical model and Hydrogeology Condition 40
4.2 Initial Condition and Boundary Condition 43
4.3 Modeling scenarios 44
4.4 Modeling results 47
4.4.1 Dissolved CO2 mass fraction 47
4.4.2 Supercritical CO2 saturation 50
4.4.3 Pressure distribution and pressure difference 53
Chapter 6 Conclusions and Suggestions 59
6.1 Conclusions 59
6.2 Suggestions 60
Reference 61
參考文獻 American Association of Petroleum Geologists, Energy Minerals Division, Unconventional Energy Resources: 2015 Review, Natural Resources Research, 24(4), 443-508, 2015.
Anthonsen, K.L., P. Aagaard , P. E. S. Bergmo, S. R. Gislason, A.E. Lothe, G. M. Mortensen, and S. Ó. Snæbjörnsdóttir, Characterisation and selection of the most prospective CO2 storage sites in the Nordic region, Energy Procedia, 63, 4884 – 4896, 2014
Bachu, S., W. D. Gunter, and E. H. Perkins, Aquifer disposal CO2: hydrodynamic and mineral trapping, Energy Conversion and Management, Vol. 35, 269-279, 1994
Bachu, S., Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43, 87–102, 2002.
Bachu, S., and J.J. Adams, Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44, 3151–3175, 2003.
Battistelli, A., C. Calore, and K. Pruess, The simulator TOUGH2/EWASG for modeling geothermal reservoirs with brines and non-condensible gas. Geothermics 26:437–464, 1997.
Benson, S.M., Monitoring Carbon Dioxide Sequestration in Deep Geological Formations for Inventory Verification and Carbon Credits, 2006.
Biddle K.T., and C. C. Wielchowsky, Hydrocarbon traps. In: Magoon, Petroleum System-From Source to Trap, 219-235, 1994.
Cao, H., Development of techniques for general purpose simulators. Ph.D. diss. Stanford University, Stanford, CA., 2002.
Celia, M. A., S. Bachu, J. M. Nordbotten, S.E. Gasda, and H. K. Dahle, Analytical models, numerical models, and data needs, Rubin ES, Keith DW, Gilboy CF (eds) Proceeding greenhouse gas control technologies, vol I, p 663, 2005.
Chang, Y., B. Coats, and J. A. Nolen, Compositional model for CO2 floods including CO2 solubility in water, 1996.
Chen, Y. C., H. C. Yeh, and C. Wei, Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis, International Journal of Environmental Research and Public Health, 9, 3085-3100, 2012.
Chiaramonte, L., M. D. Zoback, J. Friedmann, and V. Stamp, Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization, Environmental Geology, 54, 1667-1675, 2008.
Chiao, C. H., J. Y. Lin, C.W. Yu, and C.Y. Lu, Carbon Dioxide Sequestration Assessment of Late Miocene to Pleistocene Sedimentary Strata in the Southern Flank of the Taihsi Basin, Pacific Northwest National Laboratory, 2010.
CPC Corporation, Preliminary geological report of exploration well in Taoyuan County Guanyin Township, 1962 (in chinese).
Daniel, R. F., and J. G. Kaldi, Evaluating seal capacity of caprocks and intraformational barriers for the geosequestration of CO2, 2008.
Dahowski, R., X. Li, C. Davidson, N. Wei, and J. Dooley, Regional Opportunities or Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China, 2009.
Deng, H., H. P. Stauffer, D. Zhenxue, Z. Jiao, and R. C. Surdam, Simulation of industrial-scale CO2 storage: Multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage, International Journal of Greenhouse Gas Control, 10, 397–418, 2012.
Deutsch, C. V., and A. G. Journel, GSLIB: Geostatistical Software Library and User’s Guide, Oxford Univ. Press, New York, 1998.
Dong, J. J., J. Y. Hsu, W. J. Wu, T. Shimamoto , J. H.Hung, E. C. Yeh , Y. H. Wu, and H. Sone, Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Journal of Rock Mechanics & Mining Sciences, 47, 1141-1157, 2010.
Doughty, C., B.M. Freifeld, and R.C. Trautz, Site characterization for CO2 geologic storage and vice versa––The Frio Brine Pilot, Texas, USA as a case study. Environmental Geology, 2007.
Duff, I.S., MA28—A set of FORTRAN subroutines for sparse unsymmetric linear equations, 1977.
Flett, M. A., R. M. Gurton, and I. J. Taggart, Heterogeneous saline formations: long-term benefits for geo-sequestration of greenhouse gases, Greenhouse Gas Control Technologies, Volume I, 2005.
Flett, M. A., R. Gurton, and G. Weir, Heterogeneous saline formations for carbon dioxide disposal: impact of varying heterogeneity on containment and trapping, Journal of Petroleum Science and Engineering, 57, 106–118, 2007.
Garc´ıa, J. E., Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers, 2003.
Gunter W. D., and S. Bachu, and S. Benson, The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide, Geological Society, 129-145, 2004.
Grimstad A. A., and S. Georgescub , E. Lindeberga, J. F. Vuillaumea, Modelling and Simulation of Mechanisms for Leakage of CO2 from Geological Storage, Energy Procedia, 1, 2511-2518, 2008.
Gringarten, E., and C. V. Deutsch, Teacher’s Aide Variogram Interpretation and Modeling, Mathematical Geology, Vol. 33, 4, 2001.
Han, W. S., S.-Y. Lee, C. Lu, and P. B. J. Mc, Effects of permeability on CO2 trapping mechanisms and buoyancy-driven CO2 migration in saline formations, Water Resource Research, 46, 2010.
Huang, H. C., The study of using indicator statistics to construct the hydrogeological model, 2002.
Herzog, H., B. Eliasson, and O. Kaarstad, Capturing greenhouse gases. Scientific American, 282, 72–79, 2000.
Hitchon, B., W.D. Gunter, T. Gentzis, and R.T. Bailey, Sedimentary basins and greenhouse gases: a serendipitous association. Energy Conversion and Management, 40, 825–843, 1999.
Holloway, S., An overview of the Joule II project the underground disposal of carbon dioxide. Energy Conversion and Management, 37, 1149–1154, 1996.
Holloway, S., Underground sequestration of carbon dioxide – a viable green- house gas mitigation option. Energy, 30, 2318–2333, 2005.
Hsu, S. K., T. A. Lin, The potential sites and capacity of CO2 geo-sequestration off western Taiwan, EGU General Assembly 2012, 22-27, p.3896, 2012.
Hovorka, S.D., T.A. Meckel, R.H. Trevino, J.P. Nicot, and J.W. Choi, Monitoring a large volume CO2 injection: year two result from SECARB project at Denbury's Cranfield, Mississippi, USA, EnergyProcedia, 4, 2011
IEA, CO2 emissions from fuel combustion, 1971-2001, 2003.
IEA, Caprock systems for CO2 geological storage, 2011.
IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, 2005.
Industrial Technology Research Institute (ITRT), Technology of reusing CO2 and evaluation for potential of CGS, 2007.
IPCC, Climate Change 2014 Synthesis Report, 2014.
IPCC, Climate Change 2013, 2013.
Ito, T., T. Nakajimaa, S. Chiyonobub , and Z. Xuea, Petrophysical properties and their relation to injected CO2 behavior in a reservoir at the Nagaoka pilot site, Japan, Energy Procedia , 63, 2855 – 2860, 2014.
Jahangiri, H. R., and D. Zhang Effect of spatial heterogeneity on plume distribution and dilution during CO2 sequestration. International Journal of Greenhouse Gas Control, 5, 281–293, 2011.
Jin , M., G. Pickup, E. Mackay, A. Todd, and M. Sohrabi, A. Monaghan, and M. Naylor, Static and Dynamic Estimates of CO2-Storage Capacity in Two Saline Formations in the UK, SPE EUROPEC/EAGE Annual Conference and Exhibition, 2012.
Journel, A. G. Nonparametric estimation of spatial distributions, Mathematical Geology, 15(3), 445–468, 1983.
Karimnezhad, M., H. Jalalifar, M. Kamari, Investigation of caprock integrity for CO2 sequestration in an oil reservoir using a numerical method, Journal of Natural Gas Science and Engineering, 21, 1127-1137, 2014.
Klappsteina, G., and B. Rostron, Shallow hydrogeological and hydrochemical characterization of the Aquistore CO2 sequestration site in Estevan, Saskatchewan, Canada, Energy Procedia, 63, 4971 – 4976, 2014.

Koperna G., D. Riestenberg, V. Kuuskraa, R. Rhudy, R. Trautz, and G. R. Hill, The SECARB anthropogenic test: a US integrated CO2 capture, transportation and storagetest, International Journey of Clean Coal Energy, 1, 13–26, 2012.
Kumar A, R. Ozah, M. Noh, G. A. Pope, S. L. Bryant, and K. Sephrnoori, Reservoir simulation of CO2 storage in saline aquifers, 2004.
Lengler, U., L. M. De, and M. Ku¨hn, The impact of heterogeneity on the distribution of CO2: numerical simulation of CO2 storage at Ketzin, International Journal of Greenhouse Gas Control, 4, 1016–1025, 2010.
Leung, D.Y.C., G. Caramanna., and M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Reviews, 39, 426-443, 2014.
Li, C., N.C. Tien, K. Zhang, C-P Jen, P-S Hsieh, S-Y Huang, and F. Maggi, Assessment of large-scale offshore CO2 geological storage in Western Taiwan Basin, International Journal of Greenhouse Gas Control, 19, 281–298, 2013.
Li P., D. Zhou, C. Zhang, and G. Chen, Assessment of the effective CO2 storage capacity in the Beibuwan Basin, offshore of southwestern P. R. China, International Journal of Greenhouse Gas Control, 37, 325–339, 2015.
Lindeberg E., and P. Bergmo, The long-term fate of CO2 injected into an aquifer. Proceedings of the 6th international conference on greenhouse gas control technologies, p. 489–94, 2003.
Liu ,H., Z. Hou, P. Were, Y. Gou, and X. Sun, Simulation of CO2 plume movement in multilayered saline formations through multilayer injection technology in the Ordos Basin, China, Environment Earth Science, 71, 4447–4462, 2014.
Matheron, G., Principle of Geostatistics, Economic Geology, 58, p.12461266,1963.
McLaughlin, J. F., Y. Ganshin, S. Quillinan, R. Bentley, and Z. Jiao,. Mitigating risks associated with long-term CCS: characterizing the geologic history and heterogeneity of sealing strata. Energy Procedia, 63, 4999-5009, 2014.
Meyer R., F. May, C. Muller, K. Geel, and C. Bernstone, Regional search, selection, and geological characterization of a large anticlinal structure, as a candidate site for CO2 storage in Northern Germany. Environmental Geology, 2007.
Michael, K., A., Golab, V. Shulakova , J. Ennis-King , G. Allinson , S. Sharma , and T. Aiken, Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations, International Journal of Greenhouse Gas Control, 4 , 659–667, 2010.
Mualem, Y., New model for predicting hydraulic conductivity of unsaturated porous-media, Water Resource Research, 12, 513– 522, 1976.
Moridis, G., and K. Pruess, T2SOLV: An enhanced package of solvers for the TOUGH2 family of reservoir simulation codes, Geothermics, 27, 415–444, 1998.
Negreiros, J., M. Painho, F. Aguilar, and M. Aguilar, Geographical Information Systems Principles of Ordinary Kriging Interpolator, Journal of Applied Sciences, 10: 852-867, 2010.
Nordbotten, J. M., M. A. Celia, and S. Bachu, Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection, Transport in Porous Media, 58, 339–360, 2005.
Oldenburg, C. M., and K. Pruess. A two-dimensional dispersion module for the TOUGH2 simulator, Rep. LBL-32505, Lawrence Berkeley Lab., Berkeley, CA., 1993.
Oldenburg, C.M., and K. Pruess. Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Re-sour. Res. 31:289–302, 1995.
Oldenburg, C. M., and K. Pruess. Mixing with first-order decay in variable velocity porous media flow. Transp. Porous Media 22:161–180, 1996.
Oldenburg, C. M., K. Pruess, and S. M. Benson, Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuels, 15, 293–298, 2001.
Owusu, P. A., D. Liu and R. D. Nagre. BUCKLEY-LEVERETT DISPLACEMENT THEORY FOR WATERFLOODING PERFORMANCE IN STRATIFIED RESERVOIR. Petroleum & Coal, 56, 3, 267-281, 2014.
Peaceman, D. W., Fundamentals of numerical reservoir simulation. Elsevier, Amsterdam, 1977.
Pickup, G. E., M. Jin, P. Olden, E. Mackay, A.C. Todd, J.R. Ford, D. Lawrence, A. Monaghan, M. Naylor, R.S. Haszeldine and M. Smith, Geological storage of CO2: site appraisal and modelling, Energy Procedia, 4, 4762–4769, 2011.
Pruess, K., TOUGH2- A general purpose numerical simulator or multiphase fluid and heat flow, Rep. LBL-29400, Lawrence Berkeley Natl. Lab., Berkeley, CA., 1991.
Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 user’s guide Version 2.0, Rep. LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, CA, 1999.
Pruess, K., and A. Battistelli, TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media. Rep. LBNL-49375. Lawrence Berkeley Natl. Lab., Berkeley, CA., 2002.
Pruess, K., The TOUGH Codes—A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media, Vadose Zone Journal, 3, 738–746, 2004.
Rai, V., N-C. Chung, M.C Thurber, and D.G. Victor, PESD Carbon Storage Project Database, 2008.
Rochelle, C. A., I. Czernichowski-Lauriol, A. E. Milodowski, The impact of chemical reactions on CO2 storage in geological formations: A brief review, Geological Society, London, Special Publications, 233, 87-106, 2004.
Rutqvist, J., and C.-F. Tsang, A study of caprock hydromechanical changes associated with CO2-injection in a brine formation, Environmental Geology, 42, 296–305, 2002.
Rutqvist, J., and C.-F. Tsang, TOUGH-FLAC: A numerical simulator for analysis of coupled thermal-hydrologic-mechanical processes in fractured and porous geological media under multi-phase flow conditions, Berkeley, CA., 2003.
Rutqvist, J., J. Birkholzer, and C.-F. Tsang, Modeling of geomechanical processes during injection in a multilayered reservoir-caprock system and implications on site characterization, 2006.
Rutqvist, J., J. Birkholzer, F. Cappa, and C.-F. Tsang, Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Converation Manage, 42, 1798–1807, 2007.
Shariatipour, S. M., G. E. Pickup, and E. J. Mackay, The Effect of Aquifer/Caprock Interface on Geological Storage of CO2 , Energy Procedia, 63, 5544 – 5555, 2014.
Sinotech Consultants Inc, Investigation and study in CGS pilot site (In Chinese), 2011 .
Suekane, T., T. Nobuso, S. Hirai, and M. Kiyota, Geological storage of carbon dioxide by residual gas and solubility trapping, International Journal of Greenhouse Gas Control, 2, 58-64, 2008.
Sung, R. T., Numerical Assessment of the Migration Characteristics of CO2, Geological Sequestration in Deep Saline Aquifer, 2014 .
Sung , R. T., M. H. Li, J. J. Dong, A. T. S. Lin, S. K. Hsu, C. Y. Wang, and C. N. Yang, Numerical assessment of CO2 geological sequestration in sloping andlayered heterogeneous formations: A case study from Taiwan, International Journal of Greenhouse Gas Control, 20, 168–179, 2014 .
Tollefson, J., Countries with highest CO2-emitting power sectors, Nature, 450, 327, 2007.
Tian, H., T. Xu, Y. Li, Z. Yang, and F. Wang, Evolution of sealing efficiency for CO2 geological storage due to mineral alteration within a hydrogeologically heterogeneous caprock, Applied Geochemistry, 63, 380-397, 2015.
Tseng, C. C., D. L. Chen, S. T. Hu, and Z. S. Lin, A Simulation Study on CO2 Storage Pilot Test for the YHS Field, 2011.
Ukaegbu, C., O. Gundogan, E. Mackay, G. Pickup, A. Todd, and F. Gozalpour,Simulation of CO22 storage in a heterogeneous aquifer, Journal of Power and Energy, vol. 223 , no. 3, 249-267, 2009.
Van Genuchten, M. T., A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America Journal.,44(5), 892-898, 1980
Vilarrasa, V., S. Olivella, J. Carrera, and J. Rutqvist, Long term impacts of cold CO2 injection on the caprock integrity, International Journal of Greenhouse Gas Control, 24, 1–13, 2014.
Wang J.G., Y. Ju, F. Gao, and J. Liu, A simple approach for the estimation of CO2 penetration depth into a caprock layer, Journal of Rock Mechanics and Geotechnical Engineering, 2015.
Wu, Y. S., and K. Pruess. Numerical simulation of non-isothermal multiphase tracer transport in heterogeneous fractured porous media, Advance Water Resource, 23, 699–723, 2000.
Würdemanna,H., F. Möller , M. Kühn, W. Heidug , N. P. Christensen, G. Borma, and F. R. Schilling, CO2 SINK — From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany, International Journal of Greenhouse Gas Control, 4, 938–951, 2010.
Yarus, J. M., and R. L. Chambers, Practical Geostatistics—An Armchair Overview for Petroleum Reservoir Engineers, Society of Petroleum Engineers, 78-87, 2006
Zhang, D., and J. Song, Mechanisms for geological carbon sequestration, Procedia IUTAM, 10, 319 – 327, 2014.
Zhu, Q., D. Zuo, S. Zhang, Y. Zhang, Y. Wang, and L. Wang, Simulation of geomechanical responses of reservoirs induced by CO2 multilayer injection in the Shenhua CCS project, China, International Journal of Greenhouse Gas Control, 42, 405–414, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-10-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw