進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201615462800
論文名稱(中文) 模擬口腔環境中牙體填補材之腐蝕研究
論文名稱(英文) Corrosion of Dental Restorations in a Simulated Oral Environment
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 林昱宏
研究生(英文) Yu-Hung Lin
學號 N56031467
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-李旺龍
口試委員-郭瑞昭
口試委員-高文顯
口試委員-洪廷甫
中文關鍵字 口腔環境  光固化複合樹脂  沖腐蝕  間歇腐蝕裝置  累積損耗程度區塊圖 
英文關鍵字 oral environment  composite resins  corrosion  Intermittent Corrosion Apparatus(ICA) 
學科別分類
中文摘要 在牙體復形材料選擇上,隨著材料科技的進步,牙醫師對於操作性或患者對於美觀之要求越來越高,復形用樹脂使用也越來越廣泛,且傳統汞銀合金有汞釋放之疑慮,使得複合樹脂在操作性、色澤及價格具有優勢,其中又以光固化複合樹脂為主流,然而在臨床使用上仍存在某些缺點,如微滲透現象,機械強度不足造成之磨損,飲食習慣改變口腔環境等,都讓材料的外觀和功能發生問題。
本研究對於牙體復形(補牙)所使用的光固化複合樹脂試片以及自然牙試片做模擬口腔環境之體外實驗,有別於其他研究之腐蝕試驗方式,本研究考慮日常生活之喝飲料行為,口腔內牙齒或補綴材與飲料之接觸情形,設計間歇式腐蝕裝置來進行腐蝕試驗,並量測機械性質,經實驗得知,在同一pH值且與腐蝕溶液接觸時間相當之情況下,間歇腐蝕因含有微小之沖蝕效果,複合樹脂試片在硬度之下降量和粗糙度上升量與靜態腐蝕之結果有明顯差異,其中質量損失甚至較靜態腐蝕多出數倍。
根據兩種複合樹脂和自然牙試片腐蝕試驗之累積質量損耗,定義出三個等級之損耗程度,並利用此結果繪製成累積損耗程度區塊圖來呈現兩種腐蝕條件之不同,希望藉由此差異,能在體外實驗中以更貼近真實情況的角度進行研究。
英文摘要 The purpose of this study was to test in vitro mechanical and corrosion properties of the dental light-cured composite resins in intermittent corrosion conditions, the intermittent condition, different from related studies, is designed to simulate the oral environment when drinking soft drinks. The results show that although most of dental materials have good resistance, but in related studies, there are only static soaking as a corrosion condition in vitro experiments. In the study, the mass loss in intermittent condition is 5~10 times bigger than in static condition. Given the real oral environment situation, teeth exposed to soft drinks, intermittent condition is closer to reality. According to the results, three levels of accumulative mass loss defined that the wear maps can be obtained.
論文目次 中文摘要 I
英文摘要 II
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1牙齒構造 2
1.2.2 口腔環境 5
1.2.3生醫材料與牙科材料的選擇 6
1.2.4複合樹脂材料 7
1.2.5腐蝕試驗 10
1.3研究動機 14
1.4論文架構 16
第二章 實驗方法與設備 18
2.1 試片及腐蝕液準備 18
2.1.1 試片製備 18
2.1.2 腐蝕液(corrosion solution) 19
2.2實驗流程 24
2.3實驗設計與成果對照 26
2.4實驗設備 27
2.4.1間歇腐蝕裝置(Intermittent Corrosion Apparatus) 27
2.4.2微硬度機(microhardness tester) 30
2.4.3表面粗度儀(Surface roughness tester) 32
第三章 實驗結果與討論 34
3-1 掃描式電子顯微鏡觀測 34
3-2 微硬度與表面粗糙度量測 44
3.2.1 微硬度量測結果 44
3.2.2 表面粗糙度量測結果 47
3.2.3腐蝕條件與試片種類對微硬度、粗糙度之影響 48
3-3 腐蝕試驗 53
3.3.1自然牙試片腐蝕試驗 53
3.3.1複合樹脂試片腐蝕試驗 57
第四章 結論 66
第五章 未來展望 67
參考文獻 68
參考文獻 [1] 內政部戶政司, "Resident Population by 5-Year,10-Year Age Group." 人口資料庫, 2016.
[2] 經濟部統計處, "經濟統計簡析&統計圖表設計." 經濟部,no. 139, 2013.
[3] 行政院衛生署, "國民營養手冊." pp. 38-39, 1986.
[4] Schulze, Matthias B., et al, "Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women." Jama, vol. 292, no.8, pp. 927-934, 2004.
[5] 陳美蓮, 毛義方, 藍忠孚, "各類市售飲料的酸鹼度、酸度及重金屬含量研究." 台灣公共衛生雜誌, vol. 15, no. 2, pp. 109-105, 1996.
[6] 蔡蔭玲, "台灣地區6-18歲人口之口腔健康狀況調查." 行政院衛生署 科技研究發展計畫, 2001.
[7] 林亭枝, 謝天渝, 吳逸民, "高雄地區某教學醫院健檢個案之口腔健康狀況調查." 東港安泰醫護雜誌 , vol. 12, no. 3, pp. 143-151, 2006.
[8] Zhou, Z. R., and J. Zheng, "Tribology of dental materials: a review." Journal of physics D: applied physics, vol. 41, no. 11, pp. 113001, 2008.
[9] 王信鈞, "氧化鋯陶瓷牙科材料之沖腐蝕損耗及微奈米力學性質之研究." 成功大學奈米科技暨微系統工程研究所學位論文, pp. 1-102, 2009.
[10] Moazzez, R., B. G. N. Smith, and D. W. Bartlett, "Oral pH and drinking habit during ingestion of a carbonated drink in a group of adolescents with dental erosion." Journal of Dentistry, vol. 28, no. 6, pp. 395-397, 2000.
[11] Fang, Q., P. S. Sidky, and M. G. Hocking, "The effect of corrosion and erosion on ceramic materials." Corrosion science, vol. 39, no. 3, pp. 511-527, 1997.
[12] Batchelor, A. W., and G. W. Stachowiak, "Predicting synergism between corrosion and abrasive wear." Wear, vol. 123, no. 3, pp. 281-291, 1988.
[13] Stack, M. M., and N. Pungwiwat, "Particulate erosion–corrosion of Al in aqueous conditions: some perspectives on pH effects on the erosion–corrosion map." Tribology International, vol. 35, no. 10, pp. 651-660, 2002.
[14] Postlethwaite, John, E. B. Tinker, and M. W. Hawrylak, "Erosion-corrosion in slurry pipelines." Corrosion, vol. 30, no. 8, pp. 285-290, 1974.
[15] Madsen, Brent W, "Measurement of erosion-corrosion synergism with a slurry wear test apparatus." Wear, vol. 123, no. 2, pp, 127-142, 1988.
[16] 鍾國雄, "牙科材料學." 合記圖書出版社, pp. 4-5, 2001.
[17] Bowen, R. L, "Use of epoxy resins in restorative materials." Journal of Dental Research, vol. 35, no. 3, pp. 360-369, 1956.
[18] De Paula, A. B., Fucio, S. B. P., Ambrosano, G. M. B., Alonso, R. C. B., Sardi, J. C. O., & Puppin-Rontani, R. M., "Biodegradation and abrasive wear of nano restorative materials." Operative dentistry, vol. 36, no. 6, pp. 670-677, 2011.
[19] De Fúcio, S. B., de Paula, A. B., de Carvalho, F. G., Feitosa, V. P., Ambrosano, G. M., & Puppin-Rontani, R. M., "Biomechanical degradation of the nano-filled resin-modified glass-ionomer surface." American journal of dentistry, vol. 25, no. 6, pp. 315-320, 2012.
[20] Cavalcante, L. M., Masouras, K., Watts, D. C., Pimenta, L. A., & Silikas, N., "Effect of nanofillers' size on surface properties after toothbrush abrasion." American journal of dentistry, vol. 22, no. 1, pp. 60-64, 2009.
[21] Ryge, Gunnar, "Clinical criteria." International Dental Journal, vol. 30, no. 4, pp. 347-358, 1980.
[22] Stack, M. M., N. Corlett, and S. Turgoose, "Some thoughts on modelling the effects of oxygen and particle concentration on the erosion–corrosion of steels in aqueous slurries." Wear, vol. 255, no. 1, pp. 225-236, 2003.
[23] Jana, B. D., and Stack, M. M., "Modelling impact angle effects on erosion–corrosion of pure metals: construction of materials performance maps." Wear, vol. 259, no. 1, pp. 243-255, 2005.
[24] Stack, M. M., and B. D. Jana, "Modelling particulate erosion–corrosion regime transitions for Al/Al2O3 and Cu/ Al2O3 MMCs in aqueous conditions."Tribology international, vol. 38, no. 11, pp. 995-1006, 2006
[25] Stack, M. M., M. M. Antonov, and Irina Hussainova, "Some views on the erosion–corrosion response of bulk chromium carbide based cermets." Journal of Physics D: Applied Physics, vol.39, no. 15, pp. 3165, 2006.
[26] Yap, A. U. J., Teoh, S. H., Hastings, G. W., & Lu, C. S., "Comparative wear ranking of dental restorative materials utilizing different wear simulation modes." Journal of oral rehabilitation, vol. 24, no. 8, pp. 574-580, 1997.
[27] Wassell, R. W., J. E. McCabe, and A. W. G. Walls, "A two-body frictional wear test." Journal of dental research, vol. 73, no. 9, pp. 1546-1553, 1994.
[28] Schnabel, C., Daes, P., Kunzelmann, K. H., & Hickel, R., "Two-body wear simulation in a computer controlled artificial mouth." Journal of Dental Research, vol. 73, pp. 294, 1994.
[29] DeLong, R., and W. H. Douglas, "Development of an artificial oral environment for the testing of dental restoratives: bi-axial force and movement control."Journal of Dental Research, vol. 62, no. 1, pp. 32-36, 1983.
[30] Hu, X., Harrington, E., Marquis, P. M., & Shortall, A. C., "The influence of cyclic loading on the wear of a dental composite." Biomaterials, vol. 20, no. 10, pp. 907-912, 1990.
[31] DeGee, A. J., P. Pallav, and C. L. Davidson, "Effect of abrasion medium on wear of stress-bearing composites and amalgam in vitro." Journal of Dental Research, vol. 65, no. 5, pp. 654-658, 1986.
[32] Kawai, Keiji, and Karl F. Leinfelder, "In vitro evaluation of OCA wear resistance of posterior composites." Dental Materials, vol. 11, no. 4, pp. 246-251, 1995.
[33] Condon, John R., and Jack L. Ferracane, "Evaluation of composite wear with a new multi-mode oral wear simulator." Dental Materials, vol. 12, no. 4, pp. 218-226, 1996.
[34] Lopes, M. B., Saquy, P. C., Moura, S. K., Wang, L., Graciano, F. M. O., Correr Sobrinho, L., & Gonini Júnior, A., "Effect of different surface penetrating sealants on the roughness of a nanofiller composite resin." Brazilian dental journal, vol. 23, no. 6, pp. 692-697, 2012.
[35] Lin, C. P., and W. H. Douglas, "Structure-property relations and crack resistance at the bovine dentin-enamel junction." Journal of Dental Research, vol. 73, no. 5, pp. 1072-1078, 1994.
[36] Rasmussen, S. T., and R. E. Patchin, "Fracture properties of human enamel and dentin in an aqueous environment." Journal of dental research, vol. 63, no. 12, pp. 1362-1368, 1984.
[37] Fox, P. G, "The toughness of enamel, a natural fibrous composite." Journal of Materials Science, vol. 15, pp. 3113-3121, 1985.
[38] Paula, A. B. D., Alonso, R. C. B., Araújo, G. A. S. D., Rontani, J. P., Correr-Sobrinho, L., & Puppin-Rontani, R. M., "Influence of chemical degradation and abrasion on surface properties of nanorestorative materials." Brazilian Journal of Oral Sciences, vol. 14, no. 2, pp. 100-105, 2015.
[39] Cilli, Renato, Jose Carlos Pereira, and Anuradha Prakki, "Properties of dental resins submitted to pH catalysed hydrolysis." Journal of dentistry, vol. 40, no. 12, pp. 1144-1150, 2012.
[40] LARSEN, INGE BIRK, and ERIK GHRISTIAN MUNKSGAARD, "Effect of human saliva on surface degradation of composite resins." European Journal of Oral Sciences, vol. 99, no. 3, pp. 254-261, 1991.

[41] Bollenl, Curd ML, Paul Lambrechts, and Marc Quirynen, "Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature." Dental Materials, vol. 13, no. 4, pp. 258-269, 1997.
[42] De Gee, A. J., Wendt, S. L., Werner, A., & Davidson, C. L., "Influence of enzymes and plaque acids on in vitro wear of dental composites." Biomaterials, vol. 17, no. 13, pp. 1327-1332, 1996.
[43] Sauro, S., Watson, T. F., Tay, F. R., Chersoni, S., Breschi, L., Bernardi, F., & Prati, C., "Water uptake of bonding systems applied on root dentin surfaces: a SEM and confocal microscopic study." Dental Materials, vol. 22, no. 7, pp. 671-680, 2006.
[44] Chadwick, R. G., McCabe, J. F., Walls, A. W. G., & Storer, R., "The effect of storage media upon the surface microhardness and abrasion resistance of three composites." Dental Materials, vol. 6, no. 2, pp. 123-128, 1990.
[45] Kalachandra, S., & Wilson, T. W., "Water sorption and mechanical properties of light-cured proprietary composite tooth restorative materials." Biomaterials, vol. 13, no. 2, pp.105-109, 1992.
[46] Sarrett, D. C., & Ray, S., "The effect of water on polymer matrix and composite wear." Dental Materials, vol. 10, no. 1, pp. 6-10, 1994.
[47] Lee, S-Y., E. H. Greener, and H. J. Mueller., "Effect of food and oral simulating fluids on structure of adhesive composite systems." Journal of Dentistry, vol. 23, no. 1, pp. 27-35, 1995.
[48] Sarkar, Nikhil K, "Internal corrosion in dental composite wear." Journal of biomedical materials research, vol. 53, no. 4, pp. 371-380, 2000.
[49] Michelsen, V. B., Lygre, H., Skålevik, R., Tveit, A. B., & Solheim, E., "Identification of organic eluates from four polymer‐based dental filling materials." European journal of oral sciences, vol. 111, no. 3, pp. 263-271, 2003.
[50] Finer, Y., and J. P. Santerre. "Salivary esterase activity and its association with the biodegradation of dental composites." Journal of dental research, vol. 83, no. 1, pp. 22-26, 2004.
[51] Richardson, G. M., James, K. J., Peters, R. E., Clemow, S. R., & Siciliano, S. D, "Assessment of exposures and potential risks to the US adult population from the leaching of elements from gold and ceramic dental restorations." Journal of Exposure Science and Environmental Epidemiology, vol. 26, no. 3, pp. 309-314, 2016.

[52] Kopperud, S. E., Tveit, A. B., Gaarden, T., Sandvik, L., & Espelid, I., "Longevity of posterior dental restorations and reasons for failure." European journal of oral sciences, vol. 120, no. 6, pp. 539-548, 2012.
[53] Turssi, Cecilia Pedroso, Benedito de Moraes Purquerio, and Mônica Campos Serra, "Wear of dental resin composites: insights into underlying processes and assessment methods—a review." Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 65, no. 2, pp. 280-285, 2003.
[54] Carvalho, F. G., Sampaio, C. S., Fucio, S. B. P., Carlo, H. L., Correr-Sobrinho, L., & Puppin-Rontani, R. M., "Effect of chemical and mechanical degradation on surface roughness of three glass ionomers and a nanofilled resin composite."Operative dentistry, vol. 37, no. 5, pp. 509-517, 2012.
[55] Silva, K. G., Pedrini, D., Delbem, A. C. B., & Cannon, M., "Effect of pH variations in a cycling model on the properties of restorative materials." Operative dentistry, vol. 32, no. 4, pp. 328-335, 2007.
[56] Seow, L. L., Chong, S. Y., Lau, M. N., Tiong, S. G., & Yew, C. C., "Effect Of Beverages And Food Source On Wear Resistance Of Composite Resins." Malaysian Dental Journal, vol. 29, no. 1, 2008.
[57] Sarkar, Nikhil K, "Internal corrosion in dental composite wear." Journal of biomedical materials research, vol. 53, no. 4, pp. 371-380, 2000.
[58] McCauley, Ronald A, "Corrosion of ceramics." 1995.
[59] Söderholm, K-J, "Degradation of glass filler in experimental composites."Journal of Dental Research, vol. 60, no. 11, pp. 1867-1875, 1981.
[60] 立悠傑天然草本牙膏官方網站.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw