進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201614593000
論文名稱(中文) 結合類神經網路學習機制與溫度參考曲線模型之模糊溫度控制器於電磁熱療系統之應用
論文名稱(英文) The Electromagnetic Ehermotherapy System Based on The Fuzzy Temperature Controller with the Combination of Neural Network Learning Mechanism and Reference Temperature Curve Model
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 許元瑞
研究生(英文) Yuan-Ruei Syu
學號 N26031584
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-戴政祺
口試委員-林志隆
口試委員-楊慶隆
口試委員-黃世杰
口試委員-廖斌毅
中文關鍵字 電磁熱療  模糊控制器  參考模型  比例因子  類神經網路 
英文關鍵字 electromagnetic thermotherapy  fuzzy controller  reference model  scale factor  neural network 
學科別分類
中文摘要 電磁熱燒灼治療是將高頻電流通過感應線圈於體外產生一交變磁場,使具感磁性的金屬針具內部產生渦電流進而使針具迅速加熱,並在組織內達到治療效果的特定溫度,為了確保安全燒灼腫瘤細胞且避免溫度過高導致正常細胞壞死的危險,因此控制燒灼溫度的要求十分嚴謹。對於治療環境因素及系統的不確定性下,本研究提出具溫度曲線參考模型並結合類神經網路學習之模糊溫度控制器,克服治療環境各種的干擾,準確的控制金屬針加熱的溫度響應曲線,進行穩定且安全的熱治療。經實驗驗證,在使用本研究設計具溫度曲線參考模型並結合類神經網路學習之模糊溫度控制器,在治療距離不同或是相同的情況下,皆能有效的控制在所設定之治療溫度曲線上,並且於模擬患者呼吸時胸腹部導致之加熱距離變動下,治療溫度最大誤差在2%以內。
英文摘要 Electromagnetic thermotherapy refers to high-frequency current passing through an induction coil to generate an alternating magnetic field outside human body so that a magnetic metal needle appears eddy current internally to further heat the needle and achieve the specific temperature with therapeutic effect in the tissue. To ensure secure burning of tumor cells and avoid the necrosis of normal cells caused by high temperature, the control of burning temperature is extremely strict. In terms of uncertain therapeutic environment and system, a fuzzy temperature controller with the combination of reference temperature curve model and neural network learning is proposed in this study, aiming to overcome various interferences in the therapeutic environment, accurately control the temperature response curve for heating metal needle, and precede stable and secure thermal treatment. The experiment verifies that using the fuzzy temperature controller with the combination of reference temperature curve model and neural network learning under different or same therapeutic distance could effectively control it on the set therapeutic temperature curve. Besides, the simulation of changing heating distance resulted from the chest and abdomen of a patient when breathing shows the maximum therapeutic temperature error within 2%.
論文目次 摘 要 I
Extended Abstract II
誌謝 X
圖目錄 XIV
表目錄 XVII
第一章 緒論 1
1-1 研究背景 1
1-2電磁熱燒灼腫瘤治療簡介 2
1-3 國內外文獻回顧 4
1-4 研究動機與目的 7
1-5 論文架構 8
第二章 感應加熱系統原理及分析 9
2-1前言 9
2-2電磁感應原理 9
2-3畢奧沙瓦定律 11
2-4高週波感應加熱系統電路架構 15
2-4-1高週波加熱系統電路架構 15
2-4-2高週波加熱系統之全橋串聯諧振轉換器操作原理及分析 17
2-4-3 全橋串聯諧振轉換器控制方式 18
第三章 控制器設計 20
3-1前言 20
3-2模糊控制系統 21
3-2-1 模糊控制器架構 21
3-2-2 模糊控制架構各區塊說明 22
3-2-3 模糊控制器設計 25
3-2-4 量化因子與比例因子 28
3-3自調式模糊控制系統 31
3-3-1 自調式模糊控制器調變方法 31
3-3-2 比例因子自調式模糊控制器架構 32
3-3-3 自調式模糊控制器設計 32
3-4基於類神經網路學習機制結合溫度曲線參考之模糊控制器系統 35
3-4-1 控制器分析 35
3-4-2 基於類神經網路學習機制結合溫度曲線參考之模糊控制器架構 35
3-4-3 類神經網路調整機制 36
3-4-4 參考模型設計 43
第四章 系統架構與實驗結果分析 49
4-1系統架構 49
4-2系統硬體 51
4-2-1 閘極隔離驅動電路 51
4-2-2 一次側CT全波整流濾波電路 52
4-2-3 溫度感測電路 54
4-3系統軟體 55
4-3-1 系統操作流程 55
4-3-2溫度控制流程 58
4-3-3 人機介面設計 60
4-4系統性能指標分析 60
4-5實驗與結論 62
4-5-1 變動溫度設定溫控實驗 62
4-5-2 變動加熱距離溫控實驗 64
4-5-3 設定溫度治療曲線溫控實驗 66
4-5-4 腫瘤治療溫控實驗 68
4-5-5 溫度控制實驗總結比較與整理 69
第五章 討論與分析 70
5-1電磁熱療系統層面探討 70
5-2控制器之調變手法比較 72
5-3溫度曲線參考模型探討與分析 74
5-4控制器整體分析與討論 74
第六章 結論與未來展望 76
6-1結論 76
6-2未來展望 77
參考文獻 78
參考文獻 [1] 林孝宗,「瞭解癌症治好癌症」,成性出版社,2012。
[2] 邱宗傑,「別怕癌症」,原水出版社,2007。
[3] 行政院衛生署,「99年死因統計結果行政院衛生署」,原水文化出版社,2011。
[4] S. Franco, "Design With Operational Amplifiers and Analog Integrated Circuits Third Edition," Mc Graw Hill, 2002.
[5] 松井邦彥,「感測器活用訣竅141則」,建興出版社,2008。
[6] "Micropower Thermocouple Cold Junction Compensator LT1025 Data Manual," Linear Technology.
[7] C. D. Richard and H. B. Robert,「現代控制系統」,台灣培生教育出版社,2008.
[8] G. Ma, and G. Jiang, "Review of Tumor Hyperthermia Technique in Biomedical Engineering Frontier," 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), IEEE, pp. 1357-1359, 2010.
[9] A. Jordan, P. Wust, H. Fahking, W.John, A. Hinz, and R. Felix, "Inductive Heating of Ferromagnetic Particles and Magnetic Fluids : Physical Evaluation of their Potential for Hyperthermia," Int. J. Hyperthermia, vol. 25, pp. 499-511, 2009.
[10] X. Yang, J. Du, and Y. Liu, "Advances in Hyperthermia Technology," Proceedings of the IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005.
[11] B. Thiesen, and A. Jordan, "Clinical Applications of Magnetic Nanoparticles for Hyperthermia" Int. J. Hyperthermia, vol. 24, pp. 467-474, 2008.
[12] R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, "Feasibility and Safety of Radiofrequency Ablation for Locally Advanced Pancreatic Cancer," Br J Surg., vol. 97, pp. 220-225, 2010.
[13] Y. Minami, and M. Kudo, "Radiofrequency Ablation of Hepatocellular Carcinoma: Current Status," World J Radiology, pp. 417-424, 2010.
[14] R. J. DeWall, T. Varghese, and C. L. Brace, "Quantifying Local Stiffness Variations in Radiofrequency Ablations with Dynamic Indentation," IEEE Trans. Biomed. Eng., vol. 59, pp. 728-735, 2012.
[15] F. Tascioglu, S. Kuzgun, O. Armagan, and G. Ogutler, "Short-Term Effectiveness of Ultrasound Therapy in Knee Osteoarthritis," Journal of International Medical Research, vol. 38, pp. 1233-1242, 2010.
[16] A. Giombini, A. Di Cesare, M. Ripani, and N. Maffulli, "Localized Hyperthermia Induced by Microwave Diathermy in Osteoarthritis of the Knee: a Randomized Placebo-Controlled Double-Blind Clinical Trial," Knee Surg. Sports Traumatology Arthroscopy, vol. 19, pp. 980-987, 2011.
[17] V. Surducan, E. Surducan, R. Ciupa, and C. Neamtu, "Determination of Microwave Generators’ Performance for Medical Applications," in Proceedings of the 7th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, pp. 551-554, 2011.
[18] E. E. Jon, H. Liana, V. D. Rafael, M. M. Lluis, and R. Boris, "In Vivo Result of a New Focal Tissue Ablation Technique:Irreversible Electroporation," IEEE Transaction on Biomedical Engineering, vol. 53,no. 7, pp. 1409-1415, 2006.
[19] Golberg Alexander and Y. L. Martin, "Nonthermal Irreversible Electroporation:Fundamentals, Applications, and Challenges," IEEE Transaction on Biomedical Engineering, vol. 60, no. 3, pp.707-714, 2013.
[20] S. Lamina, S. Hanif, and Y. S. Gagarawa, "Short Wave Diathermy in the Symptomatic Management of Chronic Pelvic Inflammatory Disease Pain: a Randomized Controlled Trial," Physiotherapy Research International, vol. 16, pp. 50-56, 2011.
[21] Y. Laufer, and G. Dar, "Effectiveness of Thermal and Athermal Short-Wave Diathermy for the Management of Knee Osteoarthritis: a Systematic Review and Meta-Analysis," Osteoarthritis Cartilage, vol. 20, pp. 957-966, 2012.
[22] A. Burlaka, S. Lukin, S. Prylutska, et al., "Hyperthermic Effect of Multi-Walled Carbon Nanotubes Stimulated with Near Infrared Irradiation for Anticancer Therapy: in Vitro Studies," Experimental Oncology, vol. 32, no. 1, pp. 48-50, 2010.
[23] X. Z. Lin, R. Zuchini, H. W. Tsai, C. Y. Chen, C. H. Huang, S. C. Huang, et al., "Electromagnetic Thermotherapy Using Fine Needles for Hepatoma Treatment," Eur. J Surg. Oncology, vol. 37, pp. 604-610, 2011.
[24] S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, "Thermal Ablation Therapy for Focal Malignancy: a Unified Approach to Underlying Principles, Techniques, and Diagnostic Imaging Guidance," AJR Am J Roentgenology, vol. 174, pp. 323-331, 2000.
[25] R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrot, C. B. Taylor, "Selective Inductive Heating of Lymph Nodes," Annals of Surgery, Vol. 146, pp. 596-606, October 1957.
[26] A. Jordan, R. Scholz, P. Wust, H. Fahling, and F. Roland, "Magnetic Fluid Hyperthermia(MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 201, pp. 413-419, 1999.
[27] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, "Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 225, pp. 118-126, 2001.
[28] P. Moroz, S. K. Jones, and B. N. Gray, "Magnetically Mediated Hyperthermia: Current Status and Future Directions," INT. J. Hyperthermia, vol. 18, no. 4, pp. 267-284, 2002.
[29] S. C. Huang, Y. Y. Chang, Y. J. Chao, Y. S. Shan, X. Z. Lin, and G. B. Lee, "Dual-Row Needle Arrays Under an Electromagnetic Thermotherapy System for Bloodless Liver Resection Surgery," IEEE Transaction on Biomedical Engineering, vol. 59, no. 3, pp. 824-831, 2012.
[30] R. Zuchini, C. H. Huang, H. W. Tsai, S. C. Huang, C. P. Lin, C. Y. Chen, G. B. Lee, and X. Z. Lin, "Electromagnetic Thermoablation to Treat Thrombocytopenia in Cirrhotic and Hypersplenic Rates," Journal of gastroenterology Hepatology, vol. 25, no. 9, pp. 1578-1586, 2010.
[31] L. A. Barragan, D. Navarro, J. Acero, Isidro Urriza, and J. M. Burdio, "FPGA Implementation of a Switching Frequency Modulation Circuit for EMI Reduction in Resonant Inverters for Induction Heating Appliances," IEEE Transactions on Industrial Electrinics, vol. 55, no. 1, pp. 11-20, 2008.
[32] H. Fujita, N. Uchida, and K. Ozaki, "A New Zone-Control Induction Heating System Using Multiple Inverter Units Applicable under Mutual Magnetic Coupling Conditions," IEEE Transactions on Power Electronics, vol. 26, no. 7, pp. 2009-2017, 2010.
[33] T. Naohara, H. Aono, T. Maehara, H. Hirazawa, S. Matsutomo and Y. Watanabe, "Heat Generation Ability in AC Magnetic Field of Needle-Type Ti-Coated Mild Steel for Ablation Cancer Therapy," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30 no. 5, 2011.
[34] C. F. Huang, X. Z. Lin, W. H. Lo, "Design and Construction of a Hyperthermia System with Improved Interaction of Magnetic Induction-Heating," Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), pp. 3229-3232, 2010.
[35] L. A. Zadeh, "Fuzzy Sets*," Information And Control, Vol. 8, 338-353(1965).
[36] Y. Wang, F. Cao, "Induction Heating Power Supply Temperature Control Based on a Novel Fuzzy Controller," International Conference on Computer and Electrical Engineering 2008.
[37] Y. Wang, "Study of Induction Heating Power Supply Based on Fuzzy Controller," Industrial Electronics and Applications, 2009.
[38] C. Cheng, "Design of Fuzzy Controller for Induction Heating Using DSP," in Proc. 5th Conf. on Ind. Elec. and App., pp. 2276-2280, 2010.
[39] 蕭正昌,「應用於腫瘤熱療之奈米磁粒加熱系統研製」,國立成功大學電機工程學系碩士論文,2006。
[40] 陳明坤、戴政祺,「半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2006。
[41] 陳建璋,「半橋串聯共振式磁奈米粒熱療加熱系統研製」,國立成功大學電機工程學系碩士論文,2007。
[42] 陳建璋、戴政祺,「半橋串聯共振式磁奈米粒熱療加熱系統研製」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2007。
[43] C. C. Chen, C. C. Tai, J. L. Chen, "The Design of an Applicator and Half-Bridge Series-Resonant Type Heating System for Magnetic Nanoparticle Thermotherapy," IEEE International Magnetics Conference, 2009.
[44] 陳俊成,「應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統」,國立成功大學電機工程學系碩士論文,2008。
[45] 孔維彬,「以有限元素分析法作感應加熱線圈分析」,國立成功大學電機工程學系碩士論文,2008。
[46] 林子翔,「奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計」,國立成功大學電機工程學系碩士論文, 2009。
[47] 徐彬翔、戴政祺、吳明璋,「高頻感應加熱器之DSP數位控制設計」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2011。
[48] 陳勁克、戴政祺、游本傳,「以DSP建構數位監控系統於腫瘤電磁熱療加熱器」, 生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2011。
[49] 游本傳,「15-kW數位控制式高週波加熱系統之自動頻率追蹤」,國立成功大學電機工程學系碩士論文,2012。
[50] 曾子庭,「電磁熱療系統之即時數位電流回授控制」,國立成功大學電機工程學系碩士論文,2012。
[51] 陳仰豪,「多頻段感應加熱系統設計與大電流感測應用」,國立成功大學電機工程學系碩士論文,2012。
[52] 吳宗勳,「高功率感應加熱系統之數位溫度回授控制電路設計與腫瘤熱療應用」,國立成功大學電機工程學系碩士論文,2013。
[53] 戴書哲,「電磁熱療系統之自調式模糊溫度控制」,國立成功大學電機工程學系碩士論文,2014。
[54] 蔡志遠,「電磁感應加熱系統之電路模擬分析與溫度預測模型建置」,國立成功大學電機工程學系碩士論文,2014。
[55] 林國恩,「電磁熱療系統之自調式模糊溫度控制與調適性網路模糊推論溫度預估模型建置」,國立成功大學電機工程學系碩士論文,2015。
[56] S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, "Thermal Ablation Therapy for Focal Mailignancy:a Unified Approach to Underlying Principles, Techniques, and Diagnostic Imaging Guidance,"American Journal of Roentgenology,Diagnostic Imaging and Related Sciences, vol. 174, no. 2, pp. 323-331, 2000.
[57] Y. Wang, "Induction Heating Power Supply Temperature Control Based on a Novel Fuzzy Controller," International Conference on Computer and Electrical Engineering (ICCEE), pp.618-618, 2008.
[58] Y. Wang, "Study of Induction Heating Power Supply Based on Fuzzy Controller," The 4th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 726-729, 2009.
[59] C. Cheng, "Design of Fuzzy Controller for Induction Heating Using DSP," The 5th IEEE Conference on Industrial Electronics and Application (ICIEA), pp.2276-2280, 2010.
[60] 賴耿陽,「高週波工業應用技術」,復漢出版社,1987。
[61] 陳熹棣,「高週波基礎理論與應用 淬火、微波加熱、電漿、超音波加工」,全華出版社,1995。
[62] 李永勳,「電磁學」,台灣培生教育出版有限公司,1996。
[63] C. Liu, "Frequency Control System Based on PWM," The 3rd IEEE International Conference on Communication Software and Networks(ICCSN), pp. 623-625, 2011.
[64] B. John, V. George, and M. K. Mishra, "A Simplified Three Phase PWM Rectifier with Fixed Frequency Modulation," The 2nd IEEE International Conference on Computer and Automation Engineering(ICCAE), vol. 5, pp. 83-87, 2010.
[65] Z. Zhang and Z. Tang, "Pulse Frequency Modulation LLC Series Resonant X-ray Power Supply,"The IEEE International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 16-18, 2011.
[66] J. Jang, M. Joung, S. Choi, Y. Choi, and B. Choi, "Current Mode Control for LLC Series Resonant DC-to-DC Converters," The 26th Annual IEEE, Applied Power Electronics Conference and Exposition (APEC), pp. 21-27, 2011.
[67] Y. Wang, "Induction Heating Power Supply Temperature Control Based on a Novel Fuzzy Controller," International Conference on Computer and Electrical Engineering (ICCEE), pp.618-618, 2008.
[68] Y. Wang, "Study of Induction Heating Power Supply Based on Fuzzy Controller," The 4th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 726-729, 2009.
[69] C. Cheng, "Design of Fuzzy Controller for Induction Heating Using DSP," The 5th IEEE Conference on Industrial Electronics and Application (ICIEA), pp.2276-2280, 2010.
[70] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, 1965.
[71] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes," IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 3, pp. 28-44, 1973.
[72] C. C. Lee, "Fuzzy Logic in Control Systems:Fuzzy Logic Controller, part1," IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
[73] C. C. Lee, "Fuzzy Logic in Control System:Fuzzy Logic Controller, part2," IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
[74] S. Yugang, W. Xueqin, D. Cuijing, S. Yue, 1999, "Fuzzy Control Method with Forward Feedback Integration for Table Furnace," The 38th Annual Conference Proceedings of the SICE Annual, pp. 1193-1197, 1999.
[75] E. Cerruto, A. Consoli, A. Paciti, and A. Testa, "Fuzzy Adaptive Vector Control of Induction Motor Drives," IEEE Transactions on Power Electronics, vol. 12, no. 6, pp. 1028-1040, 1997.
[76] T.J. Procyk and E. H. Mamdani, "A Linguistic Self-Organizing Process Controller," Automatica, vol. 15, no. 1, pp. 53-65, 1979.
[77] S. Shao, "Fuzzy Self-Organizing Control and its Application for Dynamical Systems," Fuzzy Sets Syst., vol. 15, no. 1, pp. 151-164, 1988.
[78] Y. Park, U. Moon, and K. Y. Lee, "A Self-organizing Fuzzy Logic Controller for Dynamic Systems Using a Fuzzy Auto-Regressive Moving Average(FARMA) Model," IEEE Transactions on Fuzzy Systems, vol. 3, no. 1, pp. 75-82, 1995.
[79] R. Tanscheit and E. M. Scharf, "Experiments with the Use of a Rule-Based Self-Organizing Controller for Robotics Applications," Fuzzy Sets Syst., vol. 26, pp. 195-214, 1988.
[80] F. Betin, A. Sivert, A. Yazidi, and G. A. Capolono, "Determination of Scaling Factors for Fuzzy Logic Control Using the Sliding-Mode Approach Application to Control of a DC Machine Drive," IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 296-309, 2007.
[81] Y. Chen, C. Perng, "Input Scaling Factors in Fuzzy Control Systems," Proceedings of the 3rd IEEE Conference on Fuzzy Systems, vol. 3, pp. 1666-1670, 1994.
[82] Y. J. Yoon, Y. J. Lee, T. H. Won, C. S. Kim, and M. H. Lee,"A Study on Design of Fuzzy Logic Control Using Adaptive Scaling Factor," IEEE International Symposium on Industrial Electronics (ISIE), vol. 1, pp. 320-325, 2002.
[83] J. Victor and A. Dourado, "Adaptive Scaling Factors Algorithm for the Fuzzy Logic Controller," The 6th IEEE international Conference on Fuzzy Systems, vol. 2, pp.1021-1026, 1997.
[84] K. R. Mudi, R. N. Pal, "A Robust Self-Tuning Scheme for PI- and PD-Type Fuzzy Controllers," IEEE Transaction on Fuzzy Systems, vol 7, no. 1, pp. 2-16, 1999.
[85] S. C. Wang and Y. H. Liu, "A Modified PI-Like Fuzzy Logic Controller for Switched Reluctance Motor Drives," IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1812-1825, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw