進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201609302800
論文名稱(中文) 實驗探討轉爐石回收資源化:高溫還原改質與作為移除二氧化碳、磷與砷之介質
論文名稱(英文) Experimental investigations on recycling the BOF-slag by reductive heating and as a medium for CO2, phosphorus and arsenic removal
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 蘇同新
研究生(英文) Tung Hsin Su
學號 L48971017
學位類別 博士
語文別 英文
論文頁數 146頁
口試委員 指導教授-楊懷仁
口試委員-江威德
口試委員-蕭炎宏
口試委員-陳維民
口試委員-何恭算
中文關鍵字 轉爐石  資源化  還原  脫磷  碳酸鹽化  二氧化碳  吸附   
英文關鍵字 BOF-slag  recycle  dephosphorization  carbonation  CO2  adsorption  arsenic 
學科別分類
中文摘要 轉爐石為一貫作業鋼鐵廠產量僅次於高爐石之固體廢棄物,世界各國鋼鐵廠皆致力於拓展轉爐石資源化再利用途徑,減少廢棄物排放量。轉爐石富含氧化鈣與鐵,可回收於鋼鐵廠作為助溶劑或磁選回收做為鐵原料,然而轉爐石磷含量高使其無法於鋼鐵廠內回收。轉爐石亦可依循高爐石資源化途徑,作為水泥原料或混泥土骨材,但其體積穩定性極差,再利用可行性備受限制。於本研究中,首先提出於高溫還原環境中改變轉爐石組成成份與礦物相,同時達成脫磷與穩定化,反應後產出之矽酸鹽相符合回收於鋼鐵廠或作為建築骨材所需。另一方面,以轉爐石為二氧化碳礦物封存原料,解析最佳反應條件與碳酸鹽化機制,並評估轉爐石所含重金屬於碳酸鹽化反應中是否改變淋溶行為,而可能造成潛在環境威脅。最後,以轉爐石做為含砷與磷水溶液之吸附材料,了解其吸附效率與反應機制,以利於增加轉爐石回收再利用可行性。
轉爐石主要含磷相為矽酸二鈣,其自由氧化鈣與水接觸時,轉換成氫氧化鈣,則為其難以維持體積穩定性之主因。高溫還原實驗於1300–1600°C下,添加石英砂或蛇紋石改變轉爐石鹽基度,可同時移除矽酸二鈣與自由氧化鈣。於還原氣氛下,首先鐵酸鈣與鎂方鐵礦所含氧化鐵還原成金屬鐵,殘留之氧化鈣及氧化鎂,與矽酸二鈣、自由氧化鈣及添加之石英砂反應產生斜矽鎂鈣石與鎂黃長石。反應後產物分為矽酸鹽相與金屬相兩相域,隨著反應溫度增加與轉爐石粒徑減少,矽酸鹽相與金屬相分離程度越明顯,金屬相因比重高而下沉與矽酸鹽相分離。相較之下,添加蛇紋石改變鹽基度實驗中,矽酸二鈣與自由氧化鈣雖可移除,但反應後產生大量自由氧化鎂,此相與自由氧化鈣相似,亦會膨脹使體積穩定性下降,因此添加蛇紋石並無利於改善轉爐石體積穩定性。熱力學評估可知矽酸二鈣中磷還原後主要以Fe2P賦存於金屬相域,而質量平衡計算顯示磷並未以氣體形式逸散,表示當還原反應系統中含大量金屬鐵時,磷傾向進入金屬相而非以氣體逸散,此觀察與文獻報導一致。添加石英砂為鹽基度改質劑產生之矽酸鹽相與金屬相分離程度高,因此移除金屬相後之矽酸鹽相磷含量降低至約0.1%。此低磷且體積穩定之矽酸鹽相可於鋼鐵廠內回收再利用,或作為水泥與瀝青混泥土骨材,有效促進轉爐石資源化。於CaO–SiO2–MgO相圖中,為最佳化轉爐石高溫還原脫磷與穩定化,建議以石英砂調整轉爐石鹽基度至C2S–merwinite–akermanite Alkemade三角中溫度較低側之成份,還原溫度達1500–1600°C,且反應完成後先緩慢降溫再急速冷卻,以抑制矽酸二鈣晶出。
轉爐石含> 35%氧化鈣,可作為二氧化碳礦物封存原料。將轉爐石、水與二氧化碳反應,反應時間最長達96小時且二氧化碳壓力達100–300 kg/cm2,以求轉爐石碳酸鹽化最佳反應條件並解析反應機制。轉爐石碳酸鹽化比例主要受控於爐石粒徑與反應溫度,並於反應24小時達到最大值,二氧化碳壓力與水岩比對碳酸鹽化比例無顯著影響,但若反應系統無水時,轉爐石碳酸鹽化效率明顯下降,顯示碳酸鹽化反應需以水為媒介,由溶解於水中之鈣離子與碳酸根反應成碳酸鈣。於本研究中,碳酸鹽化比例最高可達71%,其反應溫度為100°C、二氧化碳壓力250 kg/cm2、水岩比5且轉爐石粒徑≤ 0.5 mm。反應初期最先碳酸鹽化之礦物相為自由氧化鈣,自由氧化鈣先與水反應產生氫氧化鈣後再溶解於水中,並與溶於水中之碳酸根反應產生碳酸鈣。另一主要含鈣礦物相為矽酸二鈣,其所含鈣碳酸鹽化可分為兩階段,其一為矽酸二鈣淋溶出鈣於水溶液中,鈣離子與碳酸根反應成碳酸鈣。矽酸二鈣亦可水合反應產生鈣矽水合物,該礦物可溶於水中並再次釋出鈣離子而生成碳酸鈣。碳酸鹽化反應對水溶液成分變化之影響,轉爐石所含釩於碳酸鹽化時大量釋出,濃度可達2000 ppb,然而於反應時間超過24小時後釩濃度下降。相較之下鉻則於反應時間超過24小時後開始釋出,且濃度偏低,僅為釩濃度十分之一,因此延長反應時間至48–96小時有利於降低釩與鉻釋出對環境產生之衝擊,並可維持較高的碳酸鹽化比例。由礦物組織與水溶液成份變化可知轉爐石中所有含氧化鈣與氧化鎂之礦物相均能參與碳酸鹽化反應,此觀察與文獻中向來認定鐵酸鈣與鎂方鐵礦無法被碳酸鹽化結論不同。其中,含鎂主要礦物相為鎂方鐵礦,該相可直接碳酸鹽化產生鐵鎂質碳酸鹽類,或由鎂淋溶至水溶液中再與碳酸根反應,賦存於含鎂碳酸鈣結晶中。若考慮氧化鎂也能參與碳酸鹽化反應,則轉爐石能吸附之二氧化碳量較只有氧化鈣時提升約20%。於本研究中,轉爐石碳酸鹽化比例最高的樣本相當於每公斤轉爐石可吸收245克二氧化碳,由此可知轉爐石相當適合作為二氧化碳礦物封存原料。
本研究亦探討以轉爐石作為吸附劑移除水溶液中的磷與砷,由吸附動力實驗數據分析可知轉爐石自水溶液中移除磷與砷之反應速率符合擬二階反應方程式。當水溶液中同時存在磷與砷時,砷移除效率明顯趨緩,顯示磷存在具有抑制轉爐石吸附砷的效應,且轉爐石傾向於優先吸附磷。實驗結果顯示轉爐石吸附磷與砷,反應平衡時間分別為5天與20天,此為後續等溫吸附實驗之反應時間。於等溫吸附曲線實驗中,於低濃度時磷與砷皆符合Langmuir形式之等溫吸附曲線,且根據線性回歸計算結果可知轉爐石吸附磷與砷之最大吸附量分別為磷12.9 mg/g-slag與砷3.03 mg/g-slag。然而,當起始濃度達磷> 400 ppm與砷> 75 ppm時,水溶液中開始出現沉澱物,顯示高濃度時轉爐石移除磷與砷不再只是純粹的吸附行為。若考量沉澱效應影響,則轉爐石移除磷與砷最大量分別為磷17.9 mg/g-slag與砷8.48 mg/g-slag。X光繞射分析沉澱物顯示反應後產生少量主要由鐵與磷組成之次生礦物相,而能量散射光譜儀分析則顯示磷與砷沉澱機制與矽酸二鈣分解相關,由鐵與磷或鐵與砷組成之次生礦物相生成於分解之矽酸二鈣表面,且磷與砷含量由矽酸二鈣內部往外逐漸增加,顯示矽酸二鈣為轉爐石中移除磷與砷相關反應之主要礦物相。由上述研究可知,轉爐石可有效移除水溶液中磷與砷,適合作為汙水淨化處理之吸附材料。藉由本研究三種轉爐石改質與再利用方法,可提升轉爐石回收資源化比例,降低廢棄物排放對環境造成之衝擊,確保鋼鐵冶煉過程產出之轉爐石能妥善處置。
英文摘要 Basic-oxygen furnace (BOF) slag is the second abundant by-product from the steel-making process. It is not readily recycled for high phosphorus content and volume instability. This study performed reductive heating experiments to modify the composition of BOF-slag, and the resulted products can satisfy the requirements for recycling in steel plants or constructions. Mineral CO2 sequestrations and P-As adsorptions by BOF-slag were also investigated to broaden the possible applications of BOF-slag recycling.
In an attempt to eliminate the phosphorus-hosting dicalcium silicate (C2S) and volumetrically unstable free-lime, experiments of reductively heating the BOF-slag with quartz-sand or serpentine as a basicity modifier were carried out at 1300–1600°C. The C2S and free-lime were reacted out in the products. The mineral reactions involved reduction of Ca-ferrite and Mg-wüstite to form metal iron together with CaO and MgO, respectively. Then, these oxides re-equilibrated with C2S and SiO2 to form merwinite and akermanite. The phosphorus in C2S reacted with Fe to form Fe2P. The products were characterized by silicate–metal segregation. Textural and compositional variations indicated that the extent of such segregation increased with increasing temperature and decreasing grain size of the starting mixtures. Mass balance calculations showed that phosphorus was concentrated into the metal domain instead of being removed from the initial mixtures. Compared to the products from heating the slag–serpentine mixture, those from heating the slag–quartz mixture were characterized by higher extents of silicate–metal segregation with lower phosphorus contents of ~0.1% in the silicate domain, which therefore is recyclable. To optimize silicate–metal segregation for recycling the BOF-slag, it is suggested (1) bringing the BOF-slag composition within the low temperature side of the C2S–merwinite–akermanite Alkemade triangle by adding quartz-sand, (2) reductively heating to 1500–1600°C, and (3) cooling slowly then quenching to suppress C2S crystallization from melts.
BOF-slag contains > 35% CaO, a potential component for CO2 sequestration. Slag–water–CO2 reaction experiments were conducted with the longest reaction duration extending to 96 hours under high CO2 pressures reaching of 100–300 kg/cm2 to optimize BOF-slag carbonation conditions, to address carbonation mechanisms, and to evaluate V and Cr release from slag carbonation. The slag carbonation degree generally reached the maximum values after 24 hours’ slag–water–CO2 reaction and was controlled by slag particle size and reaction temperature. The maximum carbonation degree of 71% was produced from the experiment using fine slag of ≤ 0.5 mm under 100°C and a CO2 pressure of 250 kg/cm2 with a water/slag ratio of 5. V release from the slag to water was significantly enhanced (generally > 2 orders) by slag carbonation. In contrast, slag carbonation did not promote Cr release until the reaction duration exceeded 24 hours. However, the water Cr content was generally at least an order lower than the V concentration, which decreased when the reaction duration exceeded 24 hours. Therefore, long reaction durations of 48–96 hours are proposed to reduce environmental impacts while keeping high carbonation degrees. Mineral textures and water compositions indicated that all the CaO- and MgO-containing minerals contributed to slag carbonation. Since Mg-wüstite can also be carbonated, the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO2 sequestration capability of the BOF-slag by ~20%. Therefore, the BOF-slag is a better CO2 storage medium than that previously recognized.
The adsorption and precipitation of P and As from aqueous solutions by BOF-slag were also investigated. Experiments and modeling results showed that the pseudo-second order rate equation provided the best correlation for the adsorption kinetics of P and As. Coexistence of P and As in the solution exhibited obvious competitions for adsorption sites and the efficiency of As removal was significantly suppressed, indicating the preferential selectivity of P prior to As by BOF-slag. According to the kinetic experiments, the reaction durations were 5 and 20 days, respectively, for P and As to reach equilibrium when adsorbed by BOF-slag. For the experimental results of adsorption isotherms, both P and As can be well described by the Langmuir equations at low initial concentrations. Calculated from the linear regression, the maximum adsorption weights were 12.9 mg/g-slag for P and 3.03 mg/g-slag for As. However, precipitates occurred when initial concentration increased to > 400 ppm P and > 75 ppm As, and the highest P and As removal can increase to 17.9 mg/g-slag for P and 8.48 mg/g-slag for As. Trace amounts of secondary phases of Fe-P compounds were identified by XRD. EDS analyses demonstrated that the precipitations of P and As from aqueous solution occurred via the decomposition of C2S and followed by the formation of Fe-P and Fe-As compounds. The increasing P and As contents in the C2S grains from the interiors to the edges of liquid-solid interfaces indicated that C2S was the main phase dominated the P and As precipitations in BOF-slag. Consequently, it can be concluded that BOF-slag is qualified as adsorbents for P and As removal from aqueous solution.
論文目次 Abstract……………………………………………………………………………………...I
摘要………………………………………………………………………………………..IV
Acknowledgement………………………………………………………………………..VII
Table of contents…………………………………………………………………………VIII
Tables………………………………………………………………………………..…….XI
Figures…………………………………………………………………………………...XIII
Table of Contents
Chapter 1 Introduction of BOF-slag………………………………………………….1
1.1. Composition and constituent phases of BOF-slag………………………………….…2
1.2. Utilization of BOF-slag………………………………………………………………..9
1.2.1. Recycling in the steel plant…………………………………………………9
1.2.2. Recycled as an additive to cement or as aggregate of concrete…………….9
1.2.3. Application on CO2 sequestration……………….……………………...…11
1.2.4. BOF-slag as an adsorbent for heavy metals…………………………….…13
1.2.5. Other applications…………………………………………………………14
1.3 Objectives and Compendiums……….....……………………………………..……...17
Chapter 2 Reductive heating experiments on BOF-slag: simultaneous phosphorus re-distribution and volume stabilization for recycling…………………18
2.1. Introduction…………………………………………………………………………..18
2.2. Experiments………………………………………………………………………..…21
2.2.1. Working hypothesis……………………..…………………………………21
2.2.2. Reductive heating experiments…………..……………………………..…23
2.3. Results…………………………………………...…………………………………...26
2.3.1. Silicate–metal segregation………………………………..…………….…26
2.3.2. Phases in the silicate and metal domains……………………..……...……29
2.3.3. Compositions of the silicate and metal domains……………………..……36
2.4. Discussion………...……………………………………………………………….…39
2.4.1. Textural and thermodynamic constraints on mineral reaction mechanism..39
2.4.2. Compositional variations associated with silicate–metal segregation and controlling factors………………………………………………………….43
2.4.3. Conservative behavior of phosphorus in the basicity modified slag during reductively heating………………………………………………...………47
2.5. Applications on recycling the BOF-slag: optimizing the starting compositions, reductive heating temperature, and cooling rate…………………………………..…55
2.6. Summary…………………………………………………………………………..…62
Chapter 3 CO2 sequestration utilizing BOF-slag: controlling factors, reaction mechanisms and V–Cr concerns………………………………………...64
3.1. Introduction…………………………………………………………………………..64
3.2. Experiments……………………………………….……………………………….…68
3.2.1. Starting BOF-slag………………………………………………………….68
3.2.2. Slag carbonation experiments…………………………………………..…68
3.3. Analytical Methods…………………………………………………………………..72
3.4. Results and Discussion…………………………………………………………….…75
3.4.1. Process variables and the degree of slag carbonation…………………..…75
3.4.2. BOF-slag carbonation mechanisms………………………………………..78
3.4.3. Mineral controls on vanadium (V) and chromium (Cr) release during BOF-slag carbonation……………………………………………………..88
3.4.4. Comparisons to documented slag carbonation experiments………………92
3.4.5. Evaluating equations describing slag carbonation degree…………………94
3.4.6. Geochemical modelling to pH neutralization of BOF-slag after carbonation…………………………………………………………….......95
3.5. Summary………………………………………………………..…………………..102
Chapter 4 Investigation of adsorption kinetics and the mineral precipitation mechanism of P and As removal by BOF-slag……………………..….104
4.1. Introduction……………………………………………………………………..…..104
4.2. Experiments……………………………………………………………………....…108
4.2.1. Starting BOF-slag…………………………………………………..….…108
4.2.2. Slag–solution interaction experiments………………………………...…108
4.3. Results and Discussion……………………………………………………………...111
4.3.1. P and As removal kinetics………..………………….................................111
4.3.2. Evaluation on the effects of adsorption……...………...............................116
4.3.3. Evidence of P and As precipitation on the BOF-slag from interaction with high P and As solutions……………………………...…………………...121
4.3.3.1 P removal from high P solutions by precipitation onto the BOF-slag………………………………………………………121
4.3.3.2 P and As removal from high P-As solutions by precipitation onto the BOF-slag…………………………………………………..122
4.3.3.3 As removal from high As solutions by precipitation onto the BOF-slag………………………………………………………123
4.3.4 Comparisons to documented slag-adsorption experiments………………128
4.4. Summary……………………………………………………………………………131
Chapter 5 Conclusions……………………………………………………………...133
References……………………………………………………………………………….136
參考文獻 Ahmaruzzaman, M., 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 166, 36–59.
Ahmedzade, P., Sengoz, B., 2009. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J. Hazard. Mater. 165, 300–305.
Ahn, J.S., Chon, C.M., Moon, H.S., Kim, K.W., 2003. Arsenic removal using steel manufacturing by products as permeable reaction materials in mine tailing containment system. Water Res. 37, 2478–2488.
Aslan, S., Kapdan, I.K., 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28, 64–70.
Babel, S., Kurniawan, T.A., 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. B97, 219–243.
Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., 1999. A review of potentially low-cost sorbents for heavy metals. Wat. Res. 33, 2469–2479.
Barca, C., Gérente, C., Meyer, D., Chazarenc, F., Andrès, Y., 2012. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Res. 46, 2376–2384.
Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., Chazarenc, F., 2014. Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: removal mechanisms and performance. Ecol. Eng. 68, 214–222.
Basu, S., Lahiri, A.K., Seetharaman, S., Halder, J., 2007. Change in phosphorus partition during blowing in a commercial BOF. ISIJ Int. 47, 766–768.
Benarchid, M.Y., Diouri, A., Boukhari, A., Aride, J., Elkhadiri, I., 2005. Hydration of iron-phosphorus doped dicalcium silicate phase. Mater. Chem. Phys. 94, 190–194.
Berryman, E.J., Williams-Jones, A.E., Migdisov, A.A., 2015. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux. J. Environ. Sci. 27, 266–275.
Bowden, L.I., Jarvis, A.P., Younger, P.L., Johnson, K.L., 2009. Phosphorus removal from waste waters using basic oxygen steel slag. Environ. Sci. Technol. 43, 2476–2481.
Bonenfant, D., Kharoune, L., Sauve´, S., Hausler, R., Niquette, P., Mimeault, M., Kharoune, M., 2008. CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature. Ind. Eng. Chem. Res. 47, 7610–7616.
Bouquet, E., Leyssens, G., Schönnenbeck, C., Gilot, P., 2009. The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: experiments and modeling. Chem. Eng. Sci. 64, 2136–2146.
Brady, N.C., Weil, R.R., 1999. The nature and properties of soils, 12th ed. Prentic Hall, London, 1999.
Cao, Z.M., Wang, K.P., Qiao, Z.Y., Du, G.W., 2012. Thermodynamic reoptimization of the Fe–P system. Acta Phys.-Chim. Sin. 28, 37–43.
Chang, E.E., Pan, S.Y., Chen, Y.H., Tan, C.S., Chiang, P.C., 2012. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J. Hazard. Mater. 227–228, 97–106.
Chang, E.E., Chen, T.L., Pan, S.Y., Chen, Y.H., Chiang, P.C., 2013. Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. J. Hazard. Mater. 260, 937–946.
Chaurand, P., Rose, J., Proux, O., Hazemann, J.L., Briois, V., Salome, M., Susini, J., Ferrasse, J.H., Borschneck, D., Bottero, J.Y., 2006. In Environmental impact of steel slag reused as aggregates in road manufacturing: molecular mechanisms of chromium and vanadium release. In: Hedman, B., Painetta, P. (Eds.), 13th International Conference on X-Ray Absorption Fine Structure (XAFS13), Stanford, CA, July 2009-14. Amer Inst Physics, Stanford, CA, pp 199–201.
Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.L., Proux, O., Domas, J., Bottero, J.Y., 2007. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J. Hazard. Mater. 139, 537–542.
Chazarenc, F., Brisson, J., Comeau, Y., 2007. Slag columns for upgrading phosphorus removal from constructed wetland effluents. Water Sci. Technol. 56, 109–115.
Cheng, C.Y. Misra, V.N., Clough, J., Mun, R., 1999. Dephosphorisation of western Australian iron ore by hydrometallurgical process. Miner. Eng. 12, 1083–1092.
Coto, B., Martos, C., Peña, J.L., Rodríguez, R., Pastor, G., 2012. Effects in the solubility of CaCO3: experimental study and model description. Fluid Phase Equilib. 324, 1–7.
Das, B., Prakash, S., Reddy, P.S.R., Misra, V.N., 2007. An overview of utilization of slag and sludge from steel industries. Resour. Conserv. Recycl. 50, 40–57.
de-Bashan, L.E., Bashan, Y., 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 38, 4222–4246.
de Noirfontaine, M.N., Tusseau-Nenez, S., Signes-Frehel, M., Gasecki, G., Girod-Labianca, C., 2009. Effect of phosphorus impurity on tricalcium silicate T1: from synthesis to structural characterization. J. Am. Ceram. Soc. 92, 2337–2344.
De Windt, L., Chaurand, P., Rose, J., 2011. Kinetic of steel leaching: batch tests and modeling. Waste Manage. 31, 225–235.
Domingo, C., García-Carmona, J., Loste, E., Fanovich, A., Fraile, J., Gómez-Morales, J., 2004. Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. J. Crystal Growth 271, 268–273.
Domingo, C., Loste, E., Gómez-Morales, J., García-Carmona, J., Fraile, J., 2006. Calcite precipitation by a high-pressure CO2 carbonation route. J. Supercrit. Fluids 36, 202–215.
Drizo, A., Forget, C., Chapuis, R.P., Comeau, Y., 2006. Phosphorus removal by electric arc furnace steel slag and serpentine. Water Res. 40, 1547–1557.
Duan, J., Su, B., 2014. Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chem. Eng. J. 246, 160–167.
Duchesne, J., Reardon, E.J., 1995. Measurement and prediction of portlandite solubility in alkali solutions. Cem. Concr. Res. 25, 1043–1053.
Ecke, H., 2003. Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manage. 23, 631–640.
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.J., Zevenhoven, R., 2008. Steel converter slag as a raw material for precipitation of pure calcium carbonate. Ind. Eng. Chem. Res. 47, 7104–7111.
Eloneva, S., Teir, S., Revitzer, H., Salminen, J., Said, A., Fogelholm, C.J., Zevenhoven, R., 2009. Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. Steel Res. Int. 80, 415–421.
Eloneva, S., Puheloinen, E.-M., Kanerva, J., Ekroos, A., Zevenhoven, R., Fogelholm, C.J. 2010. Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 – legislative issues. J. Clean Prod. 18, 1833–1839.
Escalante, J.I., Gómez, L.Y., Johal, K.K., Mendoza, G., Mancha, H., Méndez, J., 2001. Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cement Concrete Res. 31, 1403–1409.
Faure, G., 1998. Principles and applications of geochemistry: a comprehensive textbook for geology students. Prentice Hall, New Jersey.
Fauth, D.J., Soong, Y., White, C.M., 2002. Carbon sequestration utilizing industrial solid residues. Prepr. Pap.–Am. Chem. Soc., Div. Fuel Chem. 47, 37–38.
Fix, W., Heymann, H., Heinke, R., 1969. Subsolidus relations in the system 2CaO•SiO2–3CaO•P2O5. J. Am. Ceram. Soc. 52, 346–347.
Gautier, M., Poirier, J., Bodénan, F., Franceschini, G., Véron, E., 2013. Basic oxygen furnace (BOF) slag cooling: laboratory characteristics and prediction calculations. Int. J. Miner. Process, 123, 94–101.
Geiseler, J., 1996. Use of steelworks slag in Europe. Waste Manage., 16, 59–63.
Geiseler, J., Drissen, P., Kuchn, P.M., Schrey, H., 1999. Liquid slag treatment guarantees high product quality of steel slags. Presented at the International Symposium on the Utilization of Metallurgical slag (ISUS99), Beijing, China.
Guo, Z., Fu, Z., Wang, S., 2007. Sulfur distribution in coke and sulfur removal during pyrolysis. Fuel Process. Technol. 88, 935–941.
Han, C., Wang, Z., Yang, H., Xue, X., 2015. Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag. J. Environ. Sci. 30, 21–29.
Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., Russell, G., 1981. Climatic impact of increasing atmospheric carbon dioxide. Science 213, 957–966.
Ho, Y.S., Mckay, G., 1999. Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465.
Huijgen, W.J.J., Witkamp, G.-J., Comans, R.N.J., 2005. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 39, 9676–9682.
Huijgen, W.J.J., Comans, R.N.J., 2006. Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ. Sci. Technol. 40, 2790–2796.
Huntzinger, D.N., Gierke, J.S., Kawatra, S.K., Eisele, T.C., Sutter, L.L., 2009. Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol. 43, 1986–1992.
Inoue, R., Suito, H., 2006a. Phosphorous partition between 2CaO・SiO2 particles and CaO-SiO2-FetO slags. ISIJ Int. 46, 174–179.
Inoue, R., Suito, H., 2006b. Mechanism of dephosphorization with CaO-SiO2-FetO slags containing mesoscopic scale 2CaO・SiO2 particles. ISIJ Int. 46, 188–194.
IPCC, 2005. Underground geological storage. In: Metz, B., Davidson, O., de Coninck, HC., Loos, M. & Meyer, L.A. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage, prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, USA.
Ishio, K., Hamada, K., Nakajima, H., 2006. Effects of nitrogen, niobium, phosphorous and carbon on the mechanical properties of aged 316LN stainless steels at the cryogenic temperature, 4K Tetsu to Hagane 92, 30–35.
Jha, V.K., Kameshima, Y., Nakajima, A., Okada, K., 2004. Hazardous ions uptake behavior of thermally activated steel-making slag. J. Hazard. Mater. B114, 139–144.
Jha, V.K., Kameshima, Y., Nakajima, A., Okada, K., 2008. Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. J. Hazard. Mater. 156, 156–162.
Jiang, J., Tian, S., Zhang, C., 2013. Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash. J. Environ. Sci. 25, 735–740.
Jiang, W., Hou, Q., Yang, Z., Zhong, C., Zheng, G., 2014. Evaluation of potential effects of soil available phosphorus on soil arseniv availability and paddy rice inorganic arsenic content. Environ. Pollut. 188, 159–165.
Jung, S.M., Do, Y.J., Choi, J.H., 2006. Reduction behavior of BOF type slags by solid carbon. Steel Res. Int. 77, 305–311.
Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C., 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technol. 76, 63–65.
Kelemen, P.B., Matter, J., 2008. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. U. S. A. 105, 17295–17300.
Khelifi, Q., Kozuki, Y., Murakami, H., Kurata, K., 2002. Nutrients adsorption from seawater by new porous carrier made from zeolitized fly ash and slag. Mar. Pollut. Bull. 45, 311–315.
Kim , D.H., Shin, M.C., Choi, H.D., Seo, C.I., Baek, K., 2008. Removal mechanisms of copper using steel-making slag: adsorption and precipitation. Desalination, 223, 283–289.
Kohl, A.L., Nielsen, R.B., 1997. Gas purification. Gulf Publishing Company, Houston, Texas.
Kourounis, S., Tsivilis, S., Tsakiridis, P.E., Papadimitriou, G.D., Tsibouki, Z., 2007. Properties and hydration of blended cements with steelmaking slag. Cement Concrete Res. 37, 815–822.
Kubo, H., Yokoyama, K., Nagasaka, T., 2010. Magnetic separation of phosphorus enriched phase from multiphase dephosphorization slag. ISIJ Int. 50, 59–64.
Lackner, K.S., 2002. Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Energy Environ. 27, 193–232.
Lau, P.S., Tam, N.F.Y., Wong, Y.S., 1997. Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ. Technol. 18, 945–951.
Li, H., Li, Y., Gong, Z., Li, X., 2013. Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecol. Eng. 53, 39–45.
Lin, P.C., Huang, C.W., Hsiao, C.T., Teng, H.S., 2008. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a Gas-solid system. Environ. Sci. Technol. 42, 2748–2752.
Liu, Y.H., Yang, H.J., Shau, Y.H., Meng, F.C., Zhang, J.X., Yang, J.S., Xu, Z.Q., Yu, S.C., 2007. Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSE decoupling and protolith characteristics. Chem. Geol. 239, 64–82.
Liu, S.Y., Gao, J., Yang, Y.J., Yang, Y.C., Ye, Z.X., 2010. Adsorption intrinsic kinetics and isotherms of lead ions on steel slag. J. Hazard. Mater. 173, 558–562.
Lu, S.G., Bai, S.Q., Shan, H.D., 2008. Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. J. Zhejiang Univ.-Sci A, 9, 125–132.
Mandal, B.K., Suzuki, K.T., 2002. Arsenic round the world: a review. Talanta, 58, 201–235.
Mann, M.E., Bradley, R.S., Hughes, M.K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787.
Manning, B.A., Goldberg, S., 1996. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil. Sci. Soc. Am. J. 60, 121–131.
Matsui, A., Nakase, K., Kikuchi, N., Kishimoto, Y., Takahashi, K., Ishida, K., 2011. Phosphorus separation from steelmaking slag by high temperature reduction with mechanical stirring. Tetsu to Hagane 97, 10–16.
Menad, N., Kanari, N., Save, M., 2014. Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques. Int. J. Miner. Process 126, 1–9.
Mineral Database. [WWW page] URL http://www.webmineral.com/.
Miyashita, Y., Masui, A., Yamada, K., Takahashi, K., 1978. Method of treating molten slags in steel making process. U.S. Patent Documents, No. 4102675.
Mohan, D., Pittman Jr., C.U., 2007. Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater. 142, 1–53.
Montes-Hernandez, G., Renard, F., Geoffroy, N., Charlet, L., Pironon, J., 2007. Calcite precipitation from CO2-H2O-Ca(OH)2 slurry under high pressure of CO2. J. Crystal Growth 308, 228–236.
Moore, J.W., Ramamoorthy, S., 1983. Heavy metals in natural waters. Springer-Verlag.
Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N., 1998. Review: phosphorus removal and recovery technologies. Sci. Total Environ. 212, 69–81.
Motz, H., Geiseler, J., 2001. Products of steel slags an opportunity to save natural resources. Waste Manage. 21, 285–293.
Muan, A., Osborn, E.F., 1965. Phase equilibria among oxides in steelmaking. Addison Wesley, Massachusetts.
Murphy, J.N., Meadowcroft, T.R., Barr, P.V., 1997. Enhancement of the cementitious properties of steelmaking slag. Can. Metall. Q. 36, 315–331.
Navarro, P., Alguacil, F.J., 2002. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy, 66, 101–105.
NOAA ESRL. National Oceanic and Atmospheric Administration, Earth System Research Laboratory. [WWW page] URL http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (Accessed in 2015).
Nurse, R.W., 1952. The effect of phosphate on the constitution and hardening of portland cement. J. Appl. Chem. 2, 708–716.
Oelkers, E.H., Gislason, S.R., Matter, J., 2008. Mineral carbonation of CO2. Elements 4, 333–337.
Oh, C., Rhee, S., Oh, M., Park, J., 2012. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. J. Hazard. Mater. 213–214, 147–155.
Ono, H., Inagaki, A., Masui, T., Narita, H., Nosaka, S., Mitsuo, T., Gohda, S., 1981. Removel of phosphorus from LD converter slag by floating separation of dicalcium silicate during solidification. Transactions ISIJ. 21, 135–144.
Proctor, D.M., Fehling, K.A., Shay, E.C., Wittenborn, J.L., Green, J.J., Avent, C., Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O., Zak, M.A., 2000. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol. 34, 1576–1582.
Rao, S.R., 2006. By-product processing and utilization, in: Resource recovery and recycling from metallurgical wastes. Wastes Management Series, 7, Elsevier, Amsterdam, 329–374.
Reddy, A.S., Pradhan, R.K., Chandra, S., 2006. Utilization of Basic Oxygen Furnace (BOF) slag in the production of a hydraulic cement binder. Int. J. Miner. Process. 79, 98–105.
Reid, R.C., Pransnitz, J.M., Poling, B.E., 1987. The properties of gases and liquids (4th edition). McGraw-Hill book co., New York.
Rendek, E., Ducom, G., Germain, P., 2006. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J. Hazard. Mater. 128, 73–79.
Renforth, P., Washbourne, C.L., Taylder, J., Manning, D.A.C., 2011. Silicate production and availability for mineral carbonation. Environ. Sci. Technol. 45, 2035–2041.
Roy, W.R., Hassett, J.J., Griffin, R.A., 1986. Competitive interactions of phosphate and molybdate on arsenate adsorption. Soil Sci. 142, 203–210.
RRUFF Database. [WWW page] URL http://rruff.info/.
Ryu, J.Y., Fruehan, R.J., Morales, A.T., 1999. Kinetics of phosphorus vaporization from slag. Iron & Steelmaker 26, 59–68.
Sakuraya, K.. Kimura, T., Iwasaki, S., 2005. Influence of phosphorus, sulpher and oxygen on 65% nitric acid corrosion resistance of super high-clean 316L stainless steel. ISIJ Int. 46, 567–572.
Samtani, M., Dollimore, D., Alexander, K.S., 2002. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochim. Acta 392–393, 135–145.
Sanna, A., Hall, M.R., Maroto-Valer, M., 2012. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ. Sci. 5, 7781–7798.
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., Maroto-Valer, M., 2014. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 43, 8049–8080.
Satman, A., Ugur, Z., Onur, M., 1999. The effect of calcite deposition on geothermal well inflow performance. Geothermics. 28, 425–444.
Sedlak, R., 1991. (ed.), Phosphorus and nitrogen removal from municipal wastewater principles and practice, 2nd ed. Lewis Publishers, New York.
Seifritz, W., 1990. CO2 disposal by means of silicates. Nature 345, 486.
Shen, W., Zhou, M., Ma, W., Hu, J., Cai, Z., 2009a. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material. J. Hazard. Mater. 164, 99–104.
Shen, D.H., Wu, C.M., Du, J.C., 2009b. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater. 23, 453–461.
Shi, C., Qian, J., 2000. High performance cementing materials from industrial slags–a review. Resour. Conserv. Recycl. 29, 195–207.
Shi, C., 2004. Steel slag–its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 16, 230–236.
Shilton, A.N., Elmetri, I., Drizo, A., Pratt, S., Haverkamp, R.G., Bilby, S.C., 2006. Phosphorus removal by an ‘active’ slag filter-a decade of full scale experience. Water Res. 40, 113–118.
Shiomi, S., Sano, N., Matsushita, Y. 1977. Removal of phosphorus in BOF slags. Tetsu to Hagane 63, 1520–1528.
Singh, D., Prasad, G., Rupainwar, D., Singh, V., 1988. As (III) removal from aqueous solution by adsorption. Water Air Soil Pollut. 42, 373–386.
Smith, E., Naidu, R., Alston, A.M., 2002. Chemistry of inorganic arsenic in soil. J. Environ. Qual. 31, 557–563.
Smith, K.R., Desai, M.A., Rogers, J.V., Houghton, R.A., 2013. Joint CO2 and CH4 accountability for global warming. P. Natl. Acad. Sci. USA 110, E2865–2874.
Su, T.H., Lin, M.F., Lee, Y.C., Yang, H.J., 2015. 轉爐石脫磷與穩定化的方法。Intellectual Property Office, Ministry of Economic Affairs, R.O.C., No. TW I500772 B.
Suk, M.O., Jo, S.K., Kim, S.H., Lee, K.Y., Park, J.M., 2006. X-ray observation of phosphorus vaporization from steelmaking slag and suppression method of phosphorus reversion in liquid iron. Metall. Mater. Trans. B 37B, 99–107.
Suito, H., Inoue, R., 2006. Behavior of phosphorous transfer from CaO-FetO-P2O5(-SiO2) slag to CaO particles. ISIJ Int. 46, 180–187.
Tao, Y., Zhang, S., Jian, W., Yuan, C., Shan, X., 2006. Effect of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere, 65, 1281–1287.
Taylor, H.F.W., 1997. Cement chemistry: 2nd edition. Thomas Telford Publishing, London.
Teir, S., Eloneva, S., Fogelholm, C.J., Zevenhoven, R., 2007. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32, 528–539.
Trépanier, C., Parent, S., Comeau, Y., Bouvrette, J., 2002. Phosphorus budget as a water quality management tool for closed aquatic mesocosms. Water Res. 36, 1007–1017.
van Zomeren, A., van der Laan, S.R., Kobesen, H.B.A., Huijgen, W.J.J., Comans, R.N.J., 2011. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manage. 31, 2236–2244.
Wachsmuth, F., Geiseler, J., Fix, W., Koch, K., Schwerdtfeger, K., 1981. Contribution to the structure of BOF-slags and its influence on their volume stability. Can. Metall. Q. 20, 279–284.
Wang, G., 2010. Determination of the expansion force of coarse steel aggregate. Constr. Build. Mater. 24, 1961–1966.
Wang, G., Wang, Y., Gao, Z., 2010. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 184, 555–560.
Williams, C.J., Aderhold, D., Edyvean, R.G.J., 1998. Comparison between biosorbents for the removal of metal ions from aqueous solutions. Wat. Res. 32, 216–224.
Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., Islam, E., 2008. Phosphate removal from solution using steel slag through magnetic separation. J. Hazard. Mater. 152, 211–215.
Xue, Y., Wu, S., Hiu, H., Zha, J., 2006. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J. Hazard. Mater. B138, 261–268.
Xue, Y., Hou, H., Zhu, S., 2009a. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. J. Hazard. Mater. 162, 391–401.
Xue, Y., Hou, H., Zhu, S., 2009b. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J. Hazard. Mater. 162, 973–980.
Xue, Y., Wu, S., Zhou, M., 2013. Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag. Chem. Eng. J. 231, 355–364.
Yokoyama, K., Kubo, H., Mori, K., Okada, H., Takeuchi, S., Nagasaka, T., 2007. Separation and recovery of phosphorus from steelmaking slags with the aid of a strong magnetic field. ISIJ Int. 47, 1541–1548.
Zhang, F.S., Itoh, H., 2005. Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere, 60, 319–325.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw