系統識別號 U0026-2607201520093300
論文名稱(中文) 以RFID室內定位技術實現多移動機器人階層式隊形控制
論文名稱(英文) Implementation of Hierarchical Formation Control for Multiple Mobile Robots Based on RFID Indoor Positioning Technology
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 103
學期 2
出版年 104
研究生(中文) 陳振彬
研究生(英文) Zhen-Bin Chen
學號 N96021020
學位類別 碩士
語文別 英文
論文頁數 62頁
口試委員 指導教授-廖德祿
中文關鍵字 隊形  跟隨領導者法  無線通訊  避障  室內定位  RFID技術 
英文關鍵字 Formation  Leader-Following  Wireless Communication  Avoidance  Indoor Localization  RFID Technology 
中文摘要 輪型機器人由於載具靈活且機動性高,近幾年被廣泛的討論與研究,再搭配上室內定位與無線通訊的技術,使得多機器人系統的協調與控制被大量應用在現實生活中,藉由多個機器人相互協調合作加上感測的訊息有效分享,系統將有更廣的空間分佈與更高的工作效率,可以完成單一機器人難以完成的任務。
本論文以RFID (Radio Frequency Identification)的技術實現室內定位與導航,利用在室內環境中事先以三角形幾何排列之被動標籤的鋪設,可讓機器人迅速地認知自身的環境位置並能自主性地移動。而本研究所建立的多機器人系統主要是協調整個群體能夠在行進中維持特定的隊形、避開障礙物並且到達指定的目的地,過程中以變換隊形的方式來克服不同的環境。核心演算法為跟隨領導者法,將群體中的機器人組成階層式隊形,並以各機器人的速度和角速度做控制,確保隊型的穩定性以達成控制之目的,之後利用無線通訊技術建立多移動機器人之間的網路結構進行溝通、協調與合作。
英文摘要 Since the wheeled robot is flexible and has high mobility, it has been widely developed and studied in recent years. Robot with indoor positioning and wireless communications technology in collaboration and control with multi-robot system is widely used in real life. Additionally, through the coordination between robots, the information provided to each robot by sensors can be complemented more effectively among the robots. The system will work more efficiently in more extensive space to implement the mission difficult to achieve with a single robot.
Based on RFID (Radio Frequency Identification) technology, this thesis explores the mobile robot's positioning and navigation. With the pre-set passive tags arranged in triangular structure in indoor environments, the mobile robot is able to recognize the position and move autonomously. The multiple mobile robot system built up in this thesis intends to implement that the specific hierarchical formation can be maintained, moves towards the destination by avoiding the obstacles, and get adapted to different environments by different formations. Based on the algorithm of leader-follower, robots are controlled to form a hierarchical formation and maintain the formation through the constraints on velocity and angular velocity of each robot. Then, building network structure by wireless communications technology between multiple mobile robots to communicate, coordination and cooperation.
Finally, we use MATLAB-Simulink to simulate the trajectory of formation control. Hardware implementation and trajectories of multi-robot in indoor environment will be provided and discussed.
論文目次 摘要 I
Abstract II
Contents V
List of Tables VII
List of Figures VIII
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Organization 4
2.1 Graph Theory 5
2.2 Formation Control Method 8
2.2.1 Virtual Structure 9
2.2.2 Behavior-Based 10
2.2.3 Leader-Follower 12
2.3 Obstacle Avoidance 14
2.3.1 Artificial Potential Field 14
2.3.2 Curvature-Velocity Method 15
2.4 Introduction of RFID Technology 17
3.1 System Structure 19
3.2 Multi-Robot System 20
3.2.1 Formation Control 21
3.2.2 Destination Tracking 29
3.2.3 Obstacle Avoidance 31
3.3 RFID Indoor Position System 36
4.1 Matlab Simulation of Formation Control 40
4.1.1 Simulation System 40
4.1.2 Simulation Results and Discussions 44
4.2 Hardware Implementation 45
4.2.1 Mobile Robots System 47
4.2.2 Indoor Positioning System 49
4.2.3 Wireless Communication System 52
4.3 System Function Verification and Result Analysis 53
References 60
參考文獻 [1] A. Farinelli, L. locchi, and D. Nardi, “Multi-Robot Systems: A Classification Focused on Coordination,” IEEE Transactions on System Man and Cybernetics, Vol. 34, No. 5, pp.2015-2028, 2004.
[2] B.D.O. Anderson, Y. Changbin, B. Fidan, and J. M. Hendrickx, “Rigid Graph Control Architecture for Autonomous Formation,” IEEE Control Systems Magazine, Vol. 28, No. 6, pp. 48-63, 2008.
[3] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2001.
[4] D.M. Stipanović, P.F. Hokayem, M.W. Spong, D.D. Šiljak, “Cooperative Avoidance Control for Multiagent Systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 129(5), pp.699-707, 2007.
[5] E. Rimon, D.E. Koditschek, “Exact Robot Navigation Using Artificial Potential Functions,” IEEE Transactions on Robotics and Automation, vol. 8(15), pp.501-518, 1992.
[6] G. Shi and H. Fang, “Fault Tolerance of Multi-Robot Formation Based on Adjacency Matrix,” Journal of Huazhong University of Science and Technology, Vol.33, No.3, pp. 39-42, 2005.
[7] H.L. Chen, “Using RFID Positioning to Guide RoboCAR in Indoor Navigation,” National Yang-Ming University Press, 2011.
[8] J. P. Desai, “A Graph Theoretic Approach for Modeling Mobile Robot Team Formation,” Journal of Robot Systems, Vol. 19, No. 11, pp.511-525, 2002.
[9] J. Shao, G. Xie, J. Yu, and L. Wang, “Leader-Following Formation Control of Multiple Mobile Robots,” in Proceedings of the 2005 IEEE International Symposium on Intelligent Control, pp.282-813, 2005.
[10] J. Qin, H. Gao, and W. X. Zheng, “A new result on average consensus for multiple agents with time-delay,” System and Control Letters, Vol.57, No.8, pp.643-653, 2008.
[11] J.R.T. Lawton, R.W. Beard, B.J. Young, “A Decentralized Approach to Formation Maneuvers,” IEEE Transactions on Robotics and Automation, vol.19(6), pp.933-941, 2003.
[12] M. Iwai and H. Tokuda, “RFID-Based Location Information Management System with Privacy Awareness”, Symposium on Applications and the Internet Workshops, pp. 468-471, 2005.
[13] M.L. Lewis, K.H. Tan, “High Precision Formation Control of Mobile Robots Using Virtual Structures,” Autonomous Robots, vol. 4(4), pp.387-403, 1997.
[14] O. khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” 1985 IEEE International Conference on Robotics and Automation, pp.500-505, 1985.
[15] “Pick’s Theorem,” https://en.wikipedia.org/wiki/Pick's_theorem.
[16] R. Rocha, J. Dias, and A. Carrvalho, “Cooperative Multi-Robot Systems: A Study of Vision-Based 3-D Mapping using Information Theory,” Robotics and Autonomous System, Vol. 53, No. 3-4, pp. 282-311, 2005.
[17] R. Disetel, Graph Theory, 4th ed. Springer-Verlag, 2010.
[18] R. Olfati-Saber and R. M. Murray, “Graph Rigidity and Distributed Formation Stabilization of Multi-Vehicle System,” in Proceedings of the 41st IEEE Conference on Decision and Control, pp. 2965-2971, 2002.
[19] R. Simmon, “The Curvature-Velocity Method for Local Obstacle Avoidance,” 1996 IEEE International Conference on Robotics and Automation, vol.4, pp.3375-3382, 1996.
[20] S. Mastellone, D.M. Stipanovi´c, C.R. Graunke, K.A. Intlekofer, M.W. Spong, “Formation Control and Collision Avoidance for Multiagent Non-holonomic System,” The International Journal of Robotics Research, vol. 27, pp.107-126, 2008.
[21] T.H. Huang, “Coordination and Fault Tolerance Control of Hierarchical Formation for Mobile Robots,” National Cheng Kung University Press, 2010.
[22] T. Balch, R.C. Arkin, “Behavior-Based Formation Control for Multirobot Teams,” IEEE Transactions on Robotics and Automation, vol. 14(6), pp.926-939, 1998.
[23] V. Stanford, “Pervasive Computing Goes the Last Hundred Feet with RFID Systems”, IEEE Pervasive Computing, Vol. 2, No. 2, pp. 9-14, 2003.
[24] W. Burber, D. P. Dobkin, and F. E. Schneider, “Coordinated Multi-Robot Exploration,” IEEE Transactions on Robotics, Vol. 21, No. 4, pp. 469-483, 1996.
[25] Y.T. Hsu, “Design and Implementation of Hierarchical Formation Control for Multiple Mobile Robots in Indoor Environment,” National Cheng Kung University Press, 2014.
[26] Y. Kui, L. Yuan , and F. Li-Xin, “Multiple Mobile Robot System: A Survey of Recent Work,” Acta Automatica Sinica, Vol. 33, No. 8,pp.785-794, 2007.
[27] Z.Y. Wang, D.B. Gu, “Distributed Leader-follower flocking control,” Asian Journal of Control, vol. 11(4), pp.396-406, 2009.
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-04起公開。

  • 如您有疑問,請聯絡圖書館