進階搜尋


下載電子全文  
系統識別號 U0026-2607201422064700
論文名稱(中文) 利用電磁誘發透明探討銣原子的超精細結構
論文名稱(英文) The Hyperfine Structures of Rubidium Atom Using Electromagnetically Induced Transparency
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 102
學期 2
出版年 103
研究生(中文) 阮氏妙賢
研究生(英文) Nguyen Thi Dieu Hien
學號 L26017025
學位類別 碩士
語文別 英文
論文頁數 62頁
口試委員 指導教授-蔡錦俊
口試委員-陳泳帆
口試委員-韓殿君
中文關鍵字 none 
英文關鍵字 Rubidium  Hyper ne Structures  Electromagnetically Induced Transparency 
學科別分類
中文摘要 none
英文摘要 In this work, we study the hyperfine structure of 87Rb in D-states by using Electromagnetically Induced Transparency (EIT). EIT is an atomic destructive phenomenon which is given by the interaction between a laser and an atom. In EIT, a weak probe light field, in resonance with an atomic transition, propagates through a medium with reduced absorption due to interaction with a strong coupling light field. EIT has studied in three energy levels included: ladder, Λ, V configurations.
In our experiment, we study the ladder type EIT of Rubidium atoms. The probe beam is strongly absorption with the |1> → |2> transition with the Rabi frequency Ωp. The coupling beam with the Rabi frequency Ωc is in the |2> → |3> transition. The decay rate of state |2> and |3> are given by Γ2 and Γ3, respectively. The EIT appears when the weak probe laser beam at 780.2 nm (5S1/2 → 5P3/2) and the strong coupling laser beam at 572.62 nm, 572.57 nm or 776 nm (5P3/2 → 7D3/2, 7D5/2 or 5P3/2 → 5D5/2). To improve the EIT to noise ratio, the laser frequency will be stabilized to a rubidium hyperfine transition to narrow the laser line-width while the coupling laser scanned cross over the transition of excited states.
論文目次 Acknowledgments . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . V
List of Figures . . . . . .. . . . . . . . . . . . VI
Chapter 1: Introduction . . . . . . . . . . . . . . 1
1.1 Rubidium Atoms . . . . . . . . . . . . . . . . 2
1.1.1 Properties of Rubidium Atoms . . . . . . . . 2
1.1.2 Fine Structure and hyper ne structure of Rubidium Atoms . 3
1.2 Electromagnetically Induced Transparency . . . . 7
Chapter 2: Theoretical Concepts . . . . . .. . . . . . . . . . 8
2.1 Density matrix equation of motion . . . . . . . . . . . . 8
2.1.1 Interaction picture and Density matrix . . . . . . . . 8
2.1.2 Two level system . . . . . . . . . . . . . . . . . 10
2.1.3 Three level system . . . . . . . . . . . . . . . 13
2.2 The Dressed state atom approaches . . . . . . . . . . 18
2.3 Intensity . . . . . . . . . . . . .. . . . . . . . . . 21
Chapter 3: Experiment Equipment and Setup . .. . . . . . 24
3.1 Experiment Setup . . . . . . . . . . . . . . . . . . 24
3.2 Laser systems . . . . . . . . . .. . . . . . . 25
3.2.1 External diode cavity laser . . . . . . . . . . . 25
3.2.2 Ti: Sapphire laser . . . . . . . . . . . . . . . . . . 28
3.2.3 Dye Ring laser . . . . . . . . . . . . . . . . . . 29
3.3 Doppler saturation absorption spectroscopy . . . . . . . 30
3.3.1 Experiment setup . . . . . . . . . . . . . . 30
3.3.2 Rubidium DFSAS . . . . . . . . . . . . . . . . . 31
3.4 Laser stabilization . . . . . . . . . . . . . . . . . . 33
Chapter 4: Result and Analysis . . . . . . . . . . . . . 35
4.1 The spectrum for 5S1/2 → 5P3/2 → 5D5/2 . . . . . . . 35
4.2 The spectrum for 5S1/2 → 5P3/2 → 7D3/2 . . . . . . 46
4.3 The spectrum for 5S1/2 → 5P3/2 → 7D5/2 . . . . . 49
Chapter 5: Conclusion . . . . . . . . . . . . .. . . . . 55
References . . . . . . . . . . . . . . . . . .. . . . . . 56
Appendix . . . . . . . . . . . . . . . . . .. . . . . . . 58
參考文獻 [1] W. A. van Wijngaarden, J. Li, and J. Koh, Hyperfine interaction constants of the 8D3/2 state in 85Rb using quantum-beat spectroscopy, Phys. Rev. A 48, 829 (1993).
[2] M. J. Snadden, A. Bell, E. Riis, and A. Ferguson, Two photon spectroscopy of laser cooled Rb using a mode-locked laser, Opt. Commun. 125, 70 (1996).
[3] A. Perez Calvan, Y. Zhao, L. A. Orozco, E. Gomez, A. D. Lange, F. Baumer, and G. D. Sprouse, Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of 85Rb and 87Rb, Phys. Lett. B 655, 114 (2007).
[4] S. E. Harris and Y. Yamamoto, Photon switching by quantum interference, Phys. Rev. Lett. 81, 3611 (1998).
[5] O. Kocharovskaya, Amplication and lasing without inversion, Phys. Rev. 219, 175 (1992).
[6] R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, Applications of electromagnetically induced transparency to quantum information processing, J. Mod. Opt. 51, 2441 (2004).
[7] A. Imamoglu and S. E. Harris, Opt. Lett. 14, 1344 (1989).
[8] W. Demtroder, Atoms, Molecules and Photons, Springer, (2006).
[9] D. A. Steck, Rubidium 87 D Line Data, Revision 1.6 (2003), http://steck.us/alkalidata.
[10] Fulton DJ, Shepherd S, Moseley RR, Sinclair BD, Dunn MH, Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems, Phys Rev A 52, 2302 (1995).
[11] M. Yan, E. G. Rickey and Y. Zhu Electromagnetically induced transparency in cold rubidium atoms, J. Opt. Soc. Am. B 18, 1057 (2001).
[12] J.J. Sakurai, Advanced quantum mechanics, Addison and Wesley, (1994).
[13] A. Krishna, K. Pandey, A. Wasan and V. Natarajan, High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency, Europhys. Lett. A 72, 221 (2005).
[14] Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type Electromagnetically Induced Transparency with Optical Pumping Effect, Phys. Rev. A 87, 033402 (2013).
[15] V. Barger and R. PhillipsJulio Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A 51, 576 (1995).
[16] C. J. Foot, Atomic Physics, Oxford University Press, Oxford, (2005).
[17] C.Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Process and Applications, Wiley Press, New York, (1992).
[18] Z. S. He, Transition properties of Ladder type Electromagnetically Induced Transparency in Cesium Atoms, Ph. D Dissertation, National Cheng Kung University (2013).
[19] Coherent 899-21 Dye Ring Laser, Operators Manual, (1990).
[20] J.A. Smith,A.T. Brown, Xinzhao Chu, Wentao Huang, J. Wigg, LabVIEW-based laser frequency stabilization system with phase-sensity detection servo loop for Doppler LIDAR
applications, Opt. Eng. 47, 114201 (2008).
[21] M. S. Safronova and U. I. Safronova, Critically evaluated theoretical energies, lifetimes, hyperfine constants, and multipole polarizabilities in 87Rb, Phys. Rev. A 83, 052508 (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw