進階搜尋


下載電子全文  
系統識別號 U0026-2607201115415400
論文名稱(中文) 藉ESL輔助設計之無線低侵入式植入生理信號監測系統
論文名稱(英文) Wireless Low-invasive Implantable Systems for Physiological Signal Monitoring by Using ESL Design
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 陳盛豪
研究生(英文) Sheng-Hao Chen
學號 n26980181
學位類別 碩士
語文別 中文
論文頁數 179頁
口試委員 指導教授-楊慶隆
口試委員-羅錦興
口試委員-黃尊禧
口試委員-邱瀝毅
口試委員-張嘉展
中文關鍵字 異質整合  電子層級設計  SystemC-AMS  低侵入  MedRadio band  假牙天線  基礎體溫  負電阻  希爾伯特曲線  分形天線  天線微型化 
英文關鍵字 Heterogeneous Integration  ESL Design  SystemC-AMS  Low-invasive  MedRadio band  Basal Body Temperature  negative resistance  Hilbert curve  fractal antenna  antenna miniaturization 
學科別分類
中文摘要 本論文提出一無線低侵入生理信號量測平台,在不需要開刀植入電子裝置的情形下協助使用者監測多種生理信號以達到居家照護(Home Care)之目的。本研究將溫度量測電路與微型MedRadio Band天線整合實作於假牙齒模中,在假牙上實現無線低侵入式植入生理信號監測系統,並經由實測成功驗證本平台之可行性以及系統之效能。
無線低侵入式植入生理信號監測系統採電子系統層級(ESL)設計的方式,其優點在於系統設計初期就能以軟體模擬系統整合後的效能,藉此印證系統規格與快速比較不同架構之效能與優缺點。本論文透過RF元件的模組化讓不同領域的模組可在SystemC-AMS所建之高階模擬平台上進行模擬,藉由模擬讓硬體進行系統整合時所發生的noise spikes等問題能提早在系統開發初期就被找出,問題越早被發現設計者能有越好的解決方案與調整彈性,以確保實作時系統能順利的整合。
為了實現無線低侵入式植入生理信號監測系統,必須在體積小於一個臼齒的條件下設計一個微型MedRadio Band天線,天線藉由分形(Fractal)希爾伯特曲線(Hilbert Curve)達到微型化設計,並結合阿基米德螺線(Archimedean Spirals)增加多個天線電流路徑形成更多模態,將原本頻寬5 MHz的天線提升276%達到13.8 MHz的頻寬以便克服實作與環境變異造成的影響。本論文應用Ansoft HFSS (High Frequency Structure Simulator) 天線模擬軟體進行天線設計、探討與分析,藉由模擬上更低頻的補償設計來減少天線的實作誤差,根據天線在真人口腔模型中模擬的結果,將口腔環境對天線的影響納入天線設計中。本論文所提出的天線根據模擬結果天線之最高增益值為-3.8 dBi,相較於其他設計在此頻帶的文獻提升了22 dBi以上的增益。實作後的天線在取得人體委員會實驗許可下(Institutional Review Board, IRB)進行真人口腔環境量測,在開口的口腔環境內天線中心頻率為344.1 MHz、頻寬為62.1 MHz (S11 < -10 dB),於MedRadio Band天線的反射損失(S11)皆小於 -4.8 dB;在閉口的口腔環境內天線中心頻率為317.2 MHz、頻寬為57 MHz (S11 < -10 dB),於MedRadio Band天線的反射損失(S11)皆小於 -8.8 dB;以豬肉設置口腔環境變異實驗,觀察生物組織厚度與距離對天線的特性影響,從實驗結果得知天線的反射損失較不受生物組織變易影響,但天線的中心頻率受到生物組織變異影響會有明顯的頻率飄移。
本論文應用ADS (Advanced Design System)電路模擬軟體對負電阻取樣放大電路進行設計、探討與分析,進而實作出一高靈敏度的取樣放大電路,可讀出溫度電阻上0.048%的變化值,達到量測基礎體溫所需0.1 ℃解析度的需求;負電阻取樣放大電路與電壓控制震盪器(VCO)、溫度電阻、微型MedRadio Band天線進行系統整合以最精簡的頻率調變(Frequency Modulation, FM)架構組成無線低侵入式植入生理信號監測系統的發射端。根據校準後多次的無線量測與統計分析後的結果,所有量測結果的溫度誤差皆小於± 0.15 ℃其中94.12%溫度誤差範圍皆小於± 0.1 ℃,本論文成功實現一無線低侵入式植入生理信號監測系統,並藉由校準後的量測印證系統的功能與此系統架構的可行性。無線低侵入式植入生理信號監測系統可幫助使用者更了解自己的生理狀況,藉由生理信號長期的監測可早期發現病癥、早期預防、早期治療,為個人健康把關,達到居家照護之目的進而減少有限寶貴醫療資源的使用。
英文摘要 This thesis proposes a wireless low-invasive measurement platform for the physiological signal without the need of surgical implantation for electronic devices to asist users monitor various physiological signals to achieve the purposes of home care. In this research, the temperature measurement circuit and compact MedRadio-band antenna are integrated and implemented on the model of an artificial tooth. Not only do we realize the implantation of wireless low-invasive systems for physiological signal monitoring in the artificial tooth but also successfully verify the feasibility and system performance of this measurement platform by the practical measurement.
Wireless low-invasive implantable systems for physiological signal monitoring adopt the electronic system level (ESL) design approach. By using the simulation platform, we can have the advantage of integrating the initial system design in the early stage with software to simulate the performance of the well-developed system in order to verify and compare the specifications, the performance, the advantages and the disadvantages of different system architectures. In this thesis, through including the modulation of RF components in the system, the simulation of different system integrations could be implemented in the high-level simulation platform based on SystemC-AMS. By heterogeneous integration simulation of the entire system, the problems such as noise spikes that occur possibly after the system hardware integration could be identified during the early system development stage. Therefore, the designers would have the early and effective solutions and flexible adjustment as soon as possible to ensure the smooth integration of entire system in implementation.
In order to achieve wireless low-invasive implantable systems for physiological signal monitoring, we must design a miniature MedRadio-band antenna under the restrictions of volume of a molar. By the design of lower operation frequency in simulation to compensate the frequency deviation offset in advance, we would reduce the error of the operation frequency of the fabricated antenna. Based on fractal antennas and Hilbert curves, we could carry out the compact-design. Furthermore, combined with Archimedes spirals, we could increase the number of antenna modes to form of multiple current paths and promote the bandwidth from the original 5 MHz to 13.8 MHz in 276% in order to overcome the impact of environmental variation. This thesis uses Ansoft HFSS (High Frequency Structure Simulator), which is full-wave EM simulator software for the antenna design, investigation and analysis. At the same time, we also run simulation in a practical model of human’s mouth to take the impact of oral environment on the variation of the antenna operation frequency into the consideration on the antenna design. According to the simulation results, the proposed antenna shows that its maximum gain value is -3.8 dBi. Compared with other paper work in this band, the gain promotes more than 22 dBi. After the fabrication of the antenna, we obtain the permission by the Institutional Review Board Commission (IRB) to measure the implantable antenna in real human’s oral cavity. In the open oral environment, the center frequency is 344.1 MHz with bandwidth is 62.1 MHz (S11 < -10 dB), and the return loss (S11) in all MedRadio-band are smaller than -4.8 dB. In the closed oral environment, the center frequency is 317.2 MHz with bandwidth is 57 MHz (S11 < -10 dB), and the return loss (S11) in all MedRadio-band are smaller than -8.8 dB. We also use pork to setup experiments to mimic the oral cavity environment variation; we observe the effects of the tissue thickness and distance of the biological tissue on characteristics of the antenna. From the measurement results, the return loss is less susceptible to the influence biological tissue, but the center frequency of the antenna has significant frequency deviation with the variations of the biological tissues.
In this thesis, ADS (Advanced Design System, circuit simulation software) is applied to design and analyze the ‘negative resistance sampling readout circuit’. And we further design a high-sensitivity sampling amplifier, which could identify the temperature within the 0.048% variation of the resistance value in order to acquire the basal body temperature (BBT) measurement needs for resolution of 0.1 oC. In this thesis, we propose wireless low-invasive implantable systems for physiological signal monitoring which includes a miniature transmitter composed of the negative resistance sampling amplifier, the voltage controlled oscillator (VCO), the temperature resistance and the MedRadio-band antenna. According to wireless experiment results included included several measurements, calibration and statistical analysis, its errors of temperature are less than ± 0.15 oC and the error of temperature in the 94.12% is in the range of ± 0.1 oC. This thesis accomplished the "wireless low-invasive implantable systems for physiological signal monitoring". Besides, the measure results after calibration could confirm the function and feasibility of this system architecture. Wireless low-invasive implantable systems for physiological signal monitoring can asist users know more about their physiological information. And from the long-term monitoring of physiological signals, we could achieve the goal of the early detection of disease, the early prevention and the early treatment for the personal health and carry out the purpose of home care. Furthermore, we can reduce the use of limited medical resources.
論文目次 目 錄
第一章 緒論 1
1.1 遠距離居家照護的研究背景與動機 1
1.2 低侵入式生醫裝置 2
1.3 異質整合 4
1.4 電子系統層級設計 6
1.5 MedRadio Band簡介 8
1.6 植入天線簡介 9
1.7 基礎體溫介紹 10
1.8 異質系統整合 13
1.9 論文架構 13

第二章 SystemC-AMS所建立之異質整合模擬平台 17
2.1 模擬平台簡介 17
2.1.1 異質整合模擬介紹 17
2.2.2 SystemC-AMS與MATLAB/simulink比較 18
2.2.3 射頻元件模組化之挑戰 19
2.2 模擬系統說明 20
2.2.3 無線低侵入植入式生理信號監測系統系統功能介紹 20
2.2.4 系統區塊介紹 21
2.3系統模擬整合 26
2.3.1 射頻元件模組化 26
2.3.2 類比元件模組化 30
2.3.3 無線傳能元件模組化 32
2.3.4 異質系統整合模擬 34
2.4 結果與討論 35
2.4.5 精簡模擬時間 35
2.4.2 電子系統層級設計印證 36
2.4.3 功能印證 39
2.4.4 結論與未來工作 43

第三章 三維分形微型MedRadio Band 天線 45
3.1 MedRadio Band天線設計簡介 45
3.2 分形天線 46
3.3 天線設計流程 49
3.3.1 假牙材料與大小 49
3.3.2 微型天線設計 50
3.3.3 微型天線實作量測結果 55
3.3.4 天線寬頻化設計 57
3.3.5 三維分形微型MedRadio Band 天線 62
3.4 天線參數優化與探討 66
3.5生醫環境模擬 67
3.6 結論 73

第四章 天線實作與量測結果 75
4.1天線實作與量測簡介 75
4.2 天線實作 76
4.2.1 齒模 76
4.2.2 三維天線 78
4.2.3 生物凝膠 82
4.3 天線量測 84
4.4 生物實驗與量測結果 85
4.5 結論 90

第五章 無線低侵入式生理信號監測系統 93
5.1 簡介 93
5.2 溫度取樣電路 95
5.3 系統整合與實作 103
5.4 量測結果與討論 110
5.4.2 初步量測結果 110
5.4.2 校準後的量測結果 114
5.4.3 無線低侵入式生理信號監測系統之模擬與量測比較 117
5.5 結論與未來工作 120

第六章 結論以及未來發展 123
6.1 結論 123
6.2 無線低侵入式植入生理信號監測系統之未來發展 126

參考文獻 129

附錄A 異質整合程式碼............................133

附錄B IRB (NCKU)許可相關文件...................145


參考文獻 [1] http://www.un.org/esa/population/publications/wpp2006/WPP2006_Highlights_rev.pdf
[2] http://www.cepd.gov.tw/
[3] http://www.doh.gov.tw/cht2006/index_populace.aspx
[4] S.H. Chen and C.L. Yang, "Implantable Fractal Dental Antennas for Low Invasive Biomedical Devices," in Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE, 2010, pp. 1-4.
[5] http://www.dt.tu-darmstadt.de/media/institut_fuer_datentechnik/pdf_4/ industriekolloquium2010/vortragsfolien/jens_kissing_socs_fuer_mobilephones.pdf
[6] http://www.delphiconsulting.com/FCC-06-103A1.pdf
[7] http://www.agape365.com.tw/agape/agape.asp?s=3
[8] http://myhospital.pixnet.net/blog/post/26730972
[9] N. Chaimanonart, K. R. Olszens, M. D. Zimmerman, W. H. Ko, and D. J. Young, "Implantable RF Power Converter for Small Animal In Vivo Biological Monitoring," in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 5194-5197.
[10] P. A. Hartmann, P. Reinkemeier, A. Rettberg, and W. Nebel, "Modelling Control Systems in SystemCAMS -Benefits and limitations," in SOC Conference, 2009. SOCC 2009. IEEE International, 2009, pp. 263-266.
[11] M. Vasilevski, F. Pecheux, H. Aboushady, and L. de Lamarre, "Modeling Heterogeneous Systems using SystemC-AMS Case Study: A Wireless Sensor Network Node," in Behavioral Modeling and Simulation Workshop, 2007. BMAS 2007. IEEE International, 2007, pp. 11-16.
[12] M. Agostinelli, R. Priewasser, M. Huemer, S. Marsili, and D. Straeussnigg, "SystemC-AMS Modeling and Simulation of Digitally Controlled DC-DC Converters," in Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, 2010, pp. 170-175.
[13] A. M. Sodagar, K. D. Wise, and K. Najafi, "A Wireless Implantable Microsystem for Multichannel Neural Recording," Microwave Theory and Techniques, IEEE Transactions on, vol. 57, pp. 2565-2573, 2009.
[14] 羅濬智,高效率超寬頻脈衝波無線傳能系統, 國立成功大學電機所碩士論文99年7月
[15] Y. Yao-Joe, H. Yu-Jie, L. Hsin-Hung, W. Tao, H. Pen-Li, L. Chii-Wan, W. Yao-Hong, and L. Shey-shi, "A Release-on-demand Wireless CMOS Drug Delivery SoC based on Electrothermal Activation Technique," in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 288-289,289a.
[16] E. Y. Chow, S. Chakraborty, W. J. Chappell, and P. P. Irazoqui, "Mixed-signal Integrated Circuits for Self-contained sub-cubic Millimeter Biomedical Implants," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 236-237.
[17] D. H. Wemer, “Fractal Radiators,” Proceedings of the 4“ Antrual 1994 IEEE Mohawk Vallej~S ection Dual-Use Technologies & Applicutions Confirenre, vol. I, SUNY Institute of Technology at UticalRomc, New York, May 23-26, 1994, pp. 478-482.
[18] D. H. Werner and S. Ganguly, "An Overview of Fractal Antenna Engineering Research," Antennas and Propagation Magazine, IEEE, vol. 45, pp. 38-57, 2003.
[19] Z. Jinhui, A. Hoorfar, and N. Engheta, "Bandwidth, Cross-polarization, and Feed-point Characteristics of Matched Hilbert Antennas," Antennas and Wireless Propagation Letters, IEEE, vol. 2, pp. 2-5, 2003.
[20] http://www.yungfung.com.tw/treatment.php?id=2
[21] C. Lin, N. Zhang and Q. Shen, “Studies on Al2O3/ZrO2/Al2O3 High K Gate Dielectrics Applied in a Fully Depleted SOI MOSFET, " in Metals and Materials International Volume 10, Number 5, 475-478,
[22] http://uniondental.myweb.hinet.net/prosth.htm
[23] A. K. Skrivervik, J. F. Zurcher, O. Staub, and J. R. Mosig, "PCS Antenna Design: the Challenge of Miniaturization," Antennas and Propagation Magazine, IEEE, vol. 43, pp. 12-27, 2001.
[24] O. Staub, Electrically Small Antennas, Ph.D. Dissertation, EPFL, Lausanne, 2001.
[25] P. Soontornpipit, C. M. Furse, and C. You Chung, "Miniaturized Biocompatible Microstrip Antenna using Genetic Algorithm," Antennas and Propagation, IEEE Transactions on, vol. 53, pp. 1939-1945, 2005.
[26] J. Kaiser, "The Archimedean Two-wire Spiral Antenna," Antennas and Propagation, IEEE Transactions on, vol. 8, pp. 312-323, 1960.
[27] P. Soontornpipit, C. M. Furse, and C. You Chung, "Design of Implantable Microstrip Antenna for Communication with Medical Implants," Microwave Theory and Techniques, IEEE Transactions on, vol. 52, pp. 1944-1951, 2004.
[28] T. Karacolak, A. Z. Hood, and E. Topsakal, "Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring," Microwave Theory and Techniques, IEEE Transactions on, vol. 56, pp. 1001-1008, 2008.
[29] C. M. Lee, T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, "Compact Broadband Stacked Implantable Antenna for Biotelemetry with Medical Devices," Electronics Letters, vol. 43, pp. 660-662, 2007.
[30] F. Merli, L. Bolomey, E. Meurville, and A. K. Skrivervik, "Implanted Antenna for
Biomedical Applications," in Antennas and Propagation Society International
Symposium (APSURSI), 2008. AP-S 2008. IEEE, 2008, pp. 1-4.
[31] J. Abadia, F. Merli, J. F. Zurcher, J. R. Mosig, and A. K. Skrivervik, "3D-Spiral Small Antenna for Biomedical Transmission Operating within the MICS Band," in Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on, 2009, pp. 1845-1849.
[32] http://www.fcc.gov/oet/rfsafety/dielectric.html
[33] http://www.epochtw.com/11/1/19/157093.htm
[34] http://twt.zhreader.com/2011/01/12_5785.html
[35] Liao, Y. Yao, H. Parviz, B. Otis, B.,"3 μW Wirelessly Powered CMOS Glucose Sensor for an Active Contact Lens," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 2011, pp. 38–39.
[36] http://www.vishay.com/docs/28762/28762.pdf
[37] http://www.datasheetcatalog.org/datasheet/maxim/MAX2605-MAX2609.pdf
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw