進階搜尋


下載電子全文  
系統識別號 U0026-2607201115240400
論文名稱(中文) 三維臼齒暫態有限元素之力學分析
論文名稱(英文) The Mechanical Analysis of Three-Dimensional, Transient Molar by The finite Element Method
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 呂明憲
研究生(英文) Ming-Hsien Lu
學號 n16984222
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-林仁輝
口試委員-莊淑芬
口試委員-沈永康
中文關鍵字 臼齒  有限元素法  DEJ  牙周膜韌帶  牙本質小管 
英文關鍵字 molar  finite element method  DEJ  PDL  dentin tubular 
學科別分類
中文摘要 本研究是對人體臼齒進行暫態的有限元素分析。主要目的是使用暫態有限元素法探討臼齒在受作用力下各個部位之力學功用,會分別探討牙髓腔、牙釉質、牙本質、牙周膜韌帶和牙本質及牙釉質過渡帶,以及在使用撞擊下之彼此的影響。在臼齒外型的CAD(computer-aided design)是採用微斷層掃(micro-computer tomography)描進行圖層掃描,再搭配空間圖層建立軟體分別建立出牙釉質、牙本質和牙髓腔之CAD。由於臼齒的牙本質和牙釉質體積小,不適合用一般拉伸試驗,故臼齒楊氏模數的得到則是採用micro-pillar搭配奈米壓痕測試(nanoindentation),進而得到牙釉質的楊氏模數為75GPa;因為牙本質的楊氏模數是隨著牙本質小管的角度改變,於是以五組不同角度下做壓痕試驗後進行真實編碼的基因演算法得到牙本質隨著角度的楊氏模數關係式。使用有限元素分析實體臼齒和臼齒分出空心牙髓腔來看,有分出空心牙髓腔會在作用力接觸處和牙冠兩旁會有應力集中現象。若使用腓腸肌之性質充當牙髓腔代入,則會觀察到有及無牙髓腔在應力分佈上影響相當小。
在牙釉質和牙本質交界的過渡帶,由於材料性質在該區域逐漸改變,於是有緩衝上方應力傳遞和造成能量負方向的跳躍的功效。使用樹脂填補的臼齒因為樹脂和臼齒的鍵結力不如牙釉質和牙本質交界鍵結強,造成應力難以傳遞,於是嚴重的應力集中發生在樹脂和臼齒之交界,所以一段時間後該處容易產生剝落。
牙周膜韌帶是屬於超彈性材料,在受力之後主要以應變來反應,而高應變讓從牙根傳遞應力到牙槽骨的應力分佈更加廣泛,並且將牙冠之應力有效的傳遞到牙根。所以整個臼齒在受力作用下,應力在傳遞過程中會先被DEJ給緩衝,然後到達PDL時再藉由超彈性的性質,將應力廣泛的傳到牙槽骨,因此臼齒並非是應力的承受體,而是作為緩衝和傳遞。
英文摘要 The investigation is using the 3 dimensional, transient finite element analysis against human molar. The main objective is to investigate the mechanical functions of every part of molar by the finite element method, and thus the investigation will discuss pulp, enamel, dentin, the periodontal ligament and the transition of dentin and enamel respectively, and discuss the effects of impact of each part to the other part.
The micro-computer tomography is adopted for the shape of human molar layers, and space layers construction software is used to get the computer-aided design of enamel and dentin as well as pulp.
Because of the small volume of enamel and dentin, general tensile test is not suitable, and thus the Young’s modulus of the molar is obtained by nanoindentation test. And then the Young’s modulus of enamel is 75GPa;However, the Young’s modulus of dentin will be different with the dentin tubular orientation. After doing 5 different angles of nanoindentation tests, substitution of real-code genetic algorithm can obtain the young’s modulus with orientation relationship:
Compared with solid molar using the finite element method, the stresses of molar with empty pulp concentrate on the force contact area and the side of tooth crown. If the gastrocnemius were acted as pulp, little effect of stress distribution can be observed.
The material properties will gradually change in the junction of enamel and dentin, thus it has the function of blocking stresses distribution from upper side and causing negative direction of energy jump.
Because the bonding strength of prosthodontics resin is smaller than the junction of enamel and dentin, the stresses are hard to pass down, and thus it cause serious stresses concentration on the boundary between resin and molar, so this area is easy to exfoliate in the future.
The periodontal ligament is a hyper-elastic material. When it endures forces, its mainly reaction is strain. High strain can make the stress distribution from root of tooth to alveolar bone more extensive, and the periodontal ligament effectively distribute stress from crown to root .
Thus the distribution of the stress of the whole molar under force will be buffered by the DEJ. When the stresses reach the PDL, the PDL will widely pass down the stresses by its hyperelastic properties. So the abilities of molar are not to bear the stress, it is to buffer and distribute the stresses.
論文目次 第一章 緒論 1
1-1前言與研究動機 1
1-2 ANSYS/LS-DYNA之簡介與特色 3
1-3 顯性與隱性求解簡介 4
1-4文獻回顧 7
第二章 臼齒機械性質之推導 14
2-1臼齒機械性質的量測 14
2-1-1牙釉質之模擬與壓痕試驗 15
2-1-2牙本質的模擬 17
2-1-3 牙本質小管方向性之材料性質量測 18
2-1-4 孔隙率之推導 20
2-1-5 材料性質之漸進和基因演算法 24
第三章 有限元素之設定 38
3-1 臼齒單體之模擬 39
3-1-1 實體不分層 39
3-1-2 實體分牙髓腔 40
3-1-3 實體分牙髓腔和牙釉質 40
3-1-4 實體牙髓腔之置入 42
3-2 臼齒單體樹脂填補之模擬 43
3-3 加入牙齦、牙槽骨和牙周膜韌帶之模擬 45
3-3-1 牙齦、牙槽骨和臼齒之模擬 45
3-3-2 牙齦、牙槽骨、牙周膜韌帶和臼齒共同模擬 46
第四章 結果與討論 56
4-1 臼齒單體之模擬結果 57
4-1-1 空心牙髓腔對臼齒整體之影響 57
4-1-2 實體牙髓腔之功效 58
4-1-3 DEJ之力學功用 62
4-2 使用樹脂補綴牙齒之平均力和碰撞分析 66
4-3 牙周膜韌帶之模擬 68
第五章 結論與未來展望 88
5-1 結論 88
5-2 未來展望 89
參考文獻: 92
附錄: 臼齒CAD之建立 96
A-1 微斷層掃瞄 96
A-2 NRecon轉檔 97
A-3 Mimics影像疊合 98
A-4 Geomagic之實體建立 100
A-5 Solidworks的曲面檢查修改及結合 102
參考文獻 [1]L. Hong and A. Elizabeth, “Characterization of nanoindentation indeuced residual stresses in human enamel by Raman microspectoscopy,” Anal. Bioanal. Chem., vol.389, pp1185-1192(2007).
[2]A. Erik and P. Anne, “Class I and Class II restorations of resin composite: An FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading,” Dent. Mat., vol.24, pp600-605(2008).
[3]A. Asundi and A. Kishen, “A strain gauge and photoelastic analysis of in vivo strain and in vivo stress distribution in human dental supporting structures,” Arch. Oral Biol., vol. 45, no.7, pp543-550(2000) .
[4]V .Lertchurakarn and J.E.A. Palamara,“Anisotropy of tensile strength of root dentin,”J. Dent. Res, vol.80, no.2, pp453-456(2001).
[5]K. Alemazdeh and D. Munch , Digital News, vol.3, pp28-33(2009).
[6]Ash, Ramfjord. “Occlusion”. 4th Edition. W. B. Saunders Company, Asia(2008).
[7]陳申岳。ANSYS有限元素法軟體 : 實務產品可靠度分析。全華出版。
[8]虎門科技ANSYS/ LS-DYNA教育訓練手冊。
[9]A. Yettram and. K. Wright, “Finite element stress analysis of the crowns of normal and restored teeth,” J. Dent. Res., vol.55 , pp1004-1011 (1976).
[10]V. Vitins and M. Dobelis, “Flexural and Creep Properties of Human Jaw Compact Bone for FEA Studies, ” Computer Methods in Biomechanics and Biomedical Engineering, vol.6, no.5, pp299-303(2003).
[11]J. Carlos and G.Carolina, “ Two-Dimensional FEA of Dowels of Different Compositions and External Surface Configurations,” J. Prosth., vol.18, no.1, pp36–42( 2009).
[12]J. Niek and K.D. Marcel, “The influence of different core material on the FEA-determined stress distribution in dental crowns ,” Dent. Mat., vol.22, no.3, pp234-242(2006).
[13]P. Ausiello, A. Apicella, “3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites,” J. Biomechanics, vol.34, no.10, pp1269-1277(2001).
[14]B. M. Andréa and C. Luiz, “ Finite Element Analysis in 2D and 3D Models for Sound and Restored Teeth,” ABAQUS Users’ Conference(2006).
[15]V. Imbeni and J.J. Kruzic, “The dentin-enamel junction and the fracture of human teeth.” Nature materials, vol.4, pp229-232(2005).
[16]B.K.B. Berkovitz. “The structure of the periodontal ligament: an update.” Eur. J. Orthodontics, vol.12, pp51-76(1990).
[17]J.S. Rees and P.H. Jacobsen, “Elastic modulus of the periodontal ligament,” Biomaterials, vol.18, no.14, pp995-999 (1997).
[18]J. Demetrios and P.Halazonetis, “Computer experiments using a two-dimensional model of tooth support .” Am. J. Orthod. Dentofac Orthop, vol.109, pp598-606(1996).
[19]X-ray Microtomograph Instruction manual.
[20]D. Weber, “Oral Histology: Development, structure, and function,” Courtesy, Asia(2005).
[21]W.C. Oliver and G.M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology”J. Mater. Res.,vol.7, pp1564(1992)
[22]A. Pegoretti and L. Fambri ,“Finite element analysis of a glass fiber reinforced composite endodontic post”. Biomaterials, vol.23, pp2667-2682(2002).
[23]R.L. Haupt and S.E. Haupt, “Practical Genetic Algorithms,” Wiley Interscience Publication , Asia(1998).
[24]D.E. Goldberg, “ Genetic Algorithms in Search, Optimization and Machine Learning Reading,” MA: Addison-Wesley (1989).
[25]C.F. Han and J.F. Lin, “Sensor Actuat,” A. Phys., vol.147, pp229-241(2008).
[26]S.P. Ho and H. Goodis, “The effect of sample preparation technique on determination of structure and nanomechanical properties of human cementum hard tissue,” J. Biomaterials, vol.25, pp4847-4857 (2004).
[27]C.N. Maganaris and J.P. Paul, “Tensile properties of the in vivo human gastrocnemius tendon,” J. Biomechanics, vol.35, no.12, pp1639-1646 (2002).
[28]A. Erik and P. Anne, “Class I and class II restoration of resin composite: An FE analysis of the influence of modulus of elastic on stress generated by occlusal loading, ” Dent. Mat., vol.24, pp600-605(2008).
[29]S.G.E. Oliveira and P. I. Seridarian, “Tooth displacement due to occlusal contacts: a three-dimensional finite element study ” J. Oral Rehabilitation, vol.33, no.12, pp874-880(2006).
[30]D .Beata and M. Andrze, “Finite element analysis of stress in molars during clenching and mastication,” J. Prosthet Dent, vol.90, pp591-597(2003).
[31]A. Wilson and J. Middleton, “The finite element analysis of stress in the periodontal ligament whensubject to vertical orthodontic forces,” Br. J. Orthod , vol.21, pp161-167 (1994).
[32]K. Williams and J. Edmundson, “Orthodontic tooth movement analyzed by the finite element method,” Biomaterials , vol.5, pp347–351(1984).
[33]R. Stephanie and J. Greg, “Quasi-linear viscoelastic behavior of the human periodontal ligament,” J. Biomechanics, vol.35, pp1411–1415(2002).
[34]K.L. Reifsnider and S.W. Case, “A micromechanics-based method for off-axis strength prediction of unidirectional laminae-Approach for a nonlinear rubber lamina,” M. Science(1999).
[35]L. Qian and M. Todo, “Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament,” Dent. Mat., vol.25, pp1285-1292(2009).
[36]Rubin C., Krishnamurthy N., Capilouto E., Yi H.. "Stress analysis of the human tooth using a three dimensional finite element model." J. Dent. Res. vol. 62, pp82-86(1983)
[37]Hojjatie B., Anusavice K.J.. "Threee dimensional finite element analysis of glass-ceramic dental crowns" J. Biomech. vol.23, pp81157-1166(1990).
[38]Beata Dejak, Andrzej Mlotkowski, Macij Romanowicz. "Finite element analysis of stresses in molars during clenching and mastication." J. Prothetic Dentistry. vol.90, pp591-597(2003).
[39]R.C. Hibbeler , “Mechanics of Materials “ ,6th edition , Pearson, p585.Asia version(2006).
[40]ANSYS/LS-DYNA theory manual, p483(2006).
[41]V. Imbeni, J.J.Kruzic,G.W.Marshall,S.J.Marshall,R.O.Ritchie.”The dentin-enamel junction and the fracture of human teeth”. Nature materials, vol.4, pp229-232 (2005).
[42]S. L. Lau, Y. K. Cheng, ”Amplitude incremental variational principle for nonlinear vibration of elastic systems”ASME Journal Of Applied Mechanics , vol. 48,pp 959-964 (1981).
[43]Y. K. Cheng, S. L. Lau, Incremental time-space finite strip method for nonlinear structural vibration,” Earthquake Engineering and Structural Dynamics, vol. 10 ,pp 239-253(1982)
[44]S. L Lau, Y. K. Cheng “Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems .”vol.50 , pp871-876(1983).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw