進階搜尋


   此篇論文尚未授權公開,紙本請查詢成功大學館藏
系統識別號 U0026-2607201115051000
論文名稱(中文) 含 Carbazole 及1,2,4-Triazole 基團之電激磷光主發光體材料的合成、鑑定與光電應用
論文名稱(英文) Electrophosphorescent Host Material Containing Carbazole and 1,2,4-Triazole Groups: Synthesis, Characterization and Optoelectronic Applications
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 吳峻瑋
研究生(英文) Juin-Wei Wu
學號 n36984145
學位類別 碩士
語文別 中文
論文頁數 77頁
口試委員 指導教授-陳雲
口試委員-溫添進
口試委員-吳逸謨
口試委員-郭炳林
中文關鍵字 有機發光二極體  雙極性  磷光    三氮唑  咔唑 
英文關鍵字 OLED  Ambipolar  Phosphorescent  Triazole  Carbazole  Fluorene 
學科別分類
中文摘要 磷光有機發光二極體(Phosphorescent Organic Light Emitting Diode, PHOLED)具有高亮度及效率,在未來的照明及平面顯示器應用上極具潛力。在PHOLED元件中,為了避免能量回傳的現象,所使用的主發光體材料(host material)的單重態能階(Eg)通常較大,電荷由電極注入時需克服的能障相當大,元件驅動電壓偏高。因此PHOLED常利用多層元件導入電荷傳輸層、摻混幫助電荷傳遞的分子或藉由結構設計來改善電荷注入及傳輸的能力。
本研究合成含雙極性(ambipolar)基團的主發光體材料(CzTzF),導入具電子傳輸能力的triazole及電洞傳輸能力的carbazole形成雙極性基團,再利用Suzuki coupling加入spiro-fluorene作為發光基團。在熱性質方面,剛硬的基團及非平面結構,使CzTzF具有很好的熱穩定性。光學性質方面,CzTzF的發光由導入的spiro-fluorene所貢獻,高量子效率的fluorene結構導入使得CzTzF的相對量子效率高達0.92。在電化學性質方面,利用循環伏安法測量氧化和還原電位,求出CzTzF的HOMO和LUMO能階分別為-5.41 eV和-2.51 eV,顯示導入的雙極性基團確實可以提高HOMO能階,降低LUMO能階,幫助電荷注入發光層。元件方面,以PVK與CzTzF摻混作為主發光體並摻雜4 wt% Ir(ppy)3作為客發光體的磷光元件,在PVK/CzTzF=9 mg/1 mg時可獲得最佳的最大亮度4940 cd/m2,相較於PVK元件的3553 cd/m2有明顯的提升,最佳的電流效率則是發生在摻混比例為PVK/CzTzF=8 mg/2 mg時,其最大電流效率為9.9 cd/A,高於PVK元件的5.6 cd/A,而在起始電壓的部分,加入CzTzF後元件的起始電壓由10.4 V下降到7.6-8.4 V。由元件量測的結果顯示,摻混含雙極基團的CzTzF確實可以幫助電荷注入發光層中,達到降低注入能障、提升電荷平衡的目的。
英文摘要 Phosphorescent organic light emitting diodes (PHOLEDs) are of great concern in recent years because of their high quantum efficiency and high luminescence. However, the host materials of PHOLEDs are usually with high energy gap to prevent energy back transfer from the triplet energy gap of guest materials. In order to improve charge transport and achieve balanced charge injection, the charge transporting moieties are introduced into molecular structure.
In this study, 9-(4-(3-(4-(9,9-dip-tolyl-9H-fluoren-2-yl)phenyl)-5-(4- (9,9-dip-tolyl-9H-fluoren-7-yl)phenyl)-4H-1,2,4-triazol-4-yl)phenyl)-9H-carbazole (CzTzF) containing hole-transporting segments (carbazole derivatives), electron-transporting segments (triazole derivatives), and spiro-fluorene chromophores had been successfully synthesized. CzTzF exhibited good thermal stability because of its rigid and non-planar structure. The PL spectra of CzTzF film showed an intrinsic peak (393 nm) attributed to spiro-fluorene groups. The HOMO and LUMO levels of CzTzF, estimated from oxidation potentials and reduction potentials in cyclic voltammograms, were -5.41 and -2.51 eV. The hole affinity groups (carbazole derivatives) and electron affinity groups (triazole derivatives) increased charge transporting ability and decreased barrier height of charge injection. The electroluminescent devices [ITO/PEDOT:PSS/PVK+CzTzF:Ir(ppy)3 /BCP(10 nm)/Ca(50 nm)/Al(100 nm)], were fabricated to investigate the influence of CzTzF on emission characteristics. The best performance was obtained with PVK/CzTzF=8 mg/2 mg device, in which the maximal luminance and luminance efficiency were 4505 cd/m2 and 9.9 cd/A better than PVK device. In addition, the turn-on voltage of EL devices containing CzTzF was much lower than PVK device.
論文目次 第一章 緒論 1
1-1 前言 1
1-2 理論基礎 3
1-2-1 有機共軛導電材料 3
1-2-2 螢光理論 4
1-2-3 螢光與磷光 7
1-2-4 影響螢光強度的因素 9
1-2-5 分子間激發態(interchain exciton) 11
1-2-6 能量轉移 13
1-2-7 磷光發光機制 15
1-3 元件發光原理及結構 17
1-3-1 發光原理 17
1-3-2 單層元件 18
1-3-3 多層元件 19
1-4 影響OLED發光效率的因素 21
第二章 文獻回顧 22
2-1 磷光主發光體材料 (phosphorescent host materials) 22
2-2 磷光客發光體材料 (phosphorescent guest materials) 24
2-3 電洞傳輸材料(Hole transporting material, HTM) 25
2-4 電子傳輸材料(Electron transporting material, ETM) 27
2-5 含二極性基團之發光材料 29
2-6 研究動機 30
第三章 實驗內容 31
3-1 實驗裝置及設備 31
3-2 鑑定儀器 32
3-3 物性及光電特性測量儀器 33
3-4 實驗藥品及材料 42
3-5 反應步驟與結果 44
第四章 結果與討論 49
4-1 核磁共振光譜 (NMR) 結構鑑定 49
4-2 熱性質分析 56
4-2-2 微分掃描熱卡計 56
4-3 光學性質 58
4-3-1 UV/vis吸收光譜及PL發光光譜 58
4-3-2 相對量子效率 60
4-4 電化學性質分析 61
4-5 磷光元件性質分析 64
4-5-1 電流密度(J)-電壓(V)-亮度(L)特性 65
4-5-2 電激發光光譜 (Electroluminescence spectra) 67
第五章 結論 72
參考文獻 74
參考文獻 1. Pope, M.; Kallmann, H. P.; Magnante, P. The Journal of Chemical Physics 1963, 38, (8), 2042-2043.

2. Tang, C. W.; VanSlyke, S. A. Applied Physics Letters 1987, 51, (12), 913-915.

3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, (6293), 539-541.

4. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2007; p xv, 1039 p.

5. Lakowicz, J. R., Principles of fluorescence spectroscopy. 3rd ed.; Springer: New York, 2006; p xxvi, 954 p.

6. Köhler, A.; Wilson, J. S.; Friend, R. H. Advanced Materials 2002, 14, (10), 701-707.

7. Köhler, A.; Wilson, J. Organic Electronics 2003, 4, (2-3), 179-189.

8. Wohlgenannt, M.; Tandon, K.; Mazumdar, S.; Ramasesha, S.; Vardeny, Z. V. Nature 2001, 409, (6819), 494-497.

9. Reufer, M.; Walter, M. J.; Lagoudakis, P. G.; Hummel, A. B.; Kolb, J. S.; Roskos, H. G.; Scherf, U.; Lupton, J. M. Nat Mater 2005, 4, (4), 340-346.

10. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, (6698), 151-154.

11. O'Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Applied Physics Letters 1999, 74, (3), 442-444.

12. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C. Applied Physics Letters 2001, 78, (11), 1622-1624.

13. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Applied Physics Letters 1999, 75, (1), 4-6.

14. Akcelrud, L. Progress in Polymer Science 2003, 28, (6), 875-962.

15. Nguyen, T.-Q.; Martini, I. B.; Liu, J.; Schwartz, B. J. The Journal of Physical Chemistry B 1999, 104, (2), 237-255.

16. Kafafi, Z. H., Organic electroluminescence. CRC Press, Taylor & Francis: Boca Raton, FL, 2005; p xiv, 514 p., 12 p. of plates.

17. May, V.; Kühn, O., Charge and energy transfer dynamics in molecular systems. 2nd, rev. and enl. ed.; Wiley-VCH; John Wiley: Weinheim Chichester, 2004; p 490 p.

18. Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Physical Review B 1999, 60, (20), 14422.

19. Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Chemical Reviews 2007, 107, (4), 1233-1271.

20. Shirota, Y.; Kageyama, H. Chemical Reviews 2007, 107, (4), 953-1010.

21. Chen, F.-C.; He, G.; Yang, Y. Applied Physics Letters 2003, 82, (7), 1006-1008.

22. Pai, D. M.; Yanus, J. F.; Stolka, M. The Journal of Physical Chemistry 1984, 88, (20), 4714-4717.

23. Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. Advanced Materials 2002, 14, (8), 581-585.

24. Kanai, H.; Ichinosawa, S.; Sato, Y. Synthetic Metals 1997, 91, (1-3), 195-196.

25. Ikai, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Applied Physics Letters 2001, 79, (2), 156-158.

26. Holmes, R. J.; D'Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E. Applied Physics Letters 2003, 83, (18), 3818-3820.

27. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chemistry of Materials 2004, 16, (23), 4743-4747.

28. Gong, S.; Chen, Y.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. Advanced Materials 2010, 22, (47), 5370-5373.

29. Yeh, S. J.; Wu, M. F.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H. Advanced Materials 2005, 17, (3), 285-289.

30. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J Am Chem Soc 2003, 125, (42), 12971-12979.

31. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, (6771), 750-753.

32. Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorganic Chemistry 2005, 44, (22), 7992-8003.

33. 陳金鑫; 黃孝文, OLED有機電激發光材料與元件. 五南圖書.

34. Shirota, Y.; Okumoto, K.; Inada, H. Synthetic Metals 2000, 111-112, 387-391.

35. Salbeck, J.; Yu, N.; Bauer, J.; Weissörtel, F.; Bestgen, H. Synthetic Metals 1997, 91, (1-3), 209-215.

36. VanSlyke, S. A.; Tang, C. W.; O'Brien, M. E.; Chen, C. H. Electroluminescent device with organic electroluminescent medium. US 5,061,569, 1991.

37. Kepler, R. G. Physical Review 1960, 119, (4), 1226.

38. Martin, E. H.; Hirsch, J. Solid State Communications 1969, 7, (10), 783-786.

39. Horowitz, G. Advanced Materials 1998, 10, (5), 365-377.

40. Babel, A.; Jenekhe, S. A. J Am Chem Soc 2003, 125, (45), 13656-13657.

41. Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, (6), 2069-2082.

42. Jenekhe, S. A.; Yi, S. Applied Physics Letters 2000, 77, (17), 2635-2637.

43. Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chemical Reviews 2007, 107, (4), 1011-1065.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw