進階搜尋


 
系統識別號 U0026-2607201110373800
論文名稱(中文) 不同土石流振動訊號偵測系統特性之比較
論文名稱(英文) Comparison of Three Devices for Debris Flow Monitoring
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 李尹維
研究生(英文) Yin-Wei Lee
電子信箱 a7s7d7q@hotmail.com
學號 N86984179
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 指導教授-黃清哲
口試委員-王兆璋
口試委員-田宗謨
中文關鍵字 地聲檢知器  麥克風  光纖光柵感測器  訊雜比 
英文關鍵字 Geophone  Microphone  Fiber bragg grating sensor  Signal-Noise-Ratio 
學科別分類
中文摘要 近年來土石流為台灣的重大災害之一。因此,行政院農委會水土保持局於全台土石流潛勢溪流建置二十三處土石流觀測站,期望能即時對當地居民提出緊告,以保障居民生命財產安全。本研究以模擬土石流與真實土石流為案例,比較地聲檢知器 (Geophone)、光纖光柵感測器 (Fiber Bragg Grating Sensor) 及麥克風之偵測適用性。地聲檢知器及光纖光柵感測器皆使用目前行政院農委會水土保持局土石流觀測站中所設置的同一型感測器,麥克風則使用B&K生產的麥克風 (Type 4190)。經由快速傅立葉轉換及Gabor轉換分析所測得之時域訊號,並比較各個感測器的SNR。現場模擬實驗結果顯示光纖光柵感測器與地聲檢知器之訊號頻譜具有高度的一致性並與文獻相似,且光纖光柵感測器有最好的SNR。麥克風受其他低頻擾動影響,所接收的石頭撞擊訊號較不明顯,導致其SNR最低。分析實際土石流之訊號結果得知,地聲檢知器干擾少可明確判定是否為土石流。麥克風無法直接判斷測得訊號是否為土石流,但與地聲檢知器之訊號比對後,可知其較早偵測到土石流,且紀錄較完整的土石流頻率範圍。根據本研究的結果,感測器加上10~150 Hz 前置濾波,應可提升其對土石流偵測的準確度。
英文摘要   Debris flows usually produce ground vibrations and loud noises due to the collision and friction between rocks and river bed in the flowing process. Monitoring ground vibrations and airborne sounds is accepted as a reliable way to detect the occurrence of debris flows. In general application, geophones were most likely utilized as sensors to measure the ground vibrations. However, ground tremors generated by debris flows are significantly small because of the attenuation when these tremors propagate in long range. Consequently, the tremors can be detected within a relatively short range. For the purpose of earlier warning, broad area detection has been the critical issue. Fiber optical sensor can be used to detect the small tremors because of its high sensitivity, very low optical loss, and immunity to electromagnetic interference. Microphone is the other instrument to measure the airborne sounds generated by debris flows since the sounds in the air have lower attenuation than the vibrations in the geo-material. In this study, there were two measurements carried out to compare the performance of Fiber Bragg Grating sensor (FBG), geophone and microphone. The artificial debris flow was simulated by putting rocks and boulders of different sizes to roll down a steep and rugged bank of Chu-Shui creek. The FBG sensor and the geophone were buried in the ground, and the microphone was installed near the slope. The results showed that the frequency ranges of ground vibrations measured by FBG sensor and geophone have high agreement, and the FBG sensor had the highest signal-to-noise ratio (SNR). On the other measurement, the debris flow occurred at Ai-Yu-Zi creek, Nan-Tou, Taiwan was detected by geophone and microphone. The results revealed that the geophone have higher SNR than microphone since the air turbulence would be the loud ambient noise. However, the signal in lower frequency, especially in 3 – 10 Hz, was received by microphone but geophone was insensitive in the frequency band.
論文目次 摘要 I
Abstract.....II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 前人研究 2
1-3 研究目的 3
第二章 相關理論 5
2-1土石流特性 5
2-2 地聲傳播特性之理論 7
2-2-1 壓力波 (P-wave) 7
2-2-2 剪力波 (S-wave) 8
2-2-3 拉夫波 (Love wave) 8
2-2-4 雷利波 (Rayleigh wave) 8
2-3 聲音在空氣中的傳播 9
2-4 分析方法 9
2-4-1快速傅立葉轉換(FFT) 9
2-4-2 Gabor 轉換 10
第三章 實驗佈置與儀器介紹 13
3-1 現地模擬土石流實驗佈置 13
3-2 量測土石流儀器佈置 16
3-3 地聲檢知器系統 19
3-4 空氣次聲量測系統 20
3-4-1 麥克風 20
3-4-2 前置放大器 22
3-4-3 可調節濾波放大器 22
3-5 光纖地聲量測系統 23
3-5-1光纖光柵感測器(Fiber Bragg Grating, FBG) 24
3-5-2解調儀 26
第四章 結果與討論 29
4-1 地聲、麥克風和光纖環境噪音 29
4-2不同感測系統之時間校正 35
4-3 現地模擬土石流結果 37
4-3 SNR (Signal-Noise Ratio) 43
4-3-1 時域訊號之SNR 43
4-3-1特定頻帶訊號之SNR 44
4-4 實際土石流測量結果 46
4-4-1愛玉子溪上上游環境噪音 46
4-4-2土石流訊號 51
第五章 結論與建議 69
5-1 結論 69
5-2 建議 69
參考文獻 70
附錄A 72
附錄B 75
附錄C 76
參考文獻 1. Berkoff, T. A. and Kersey, A. D., “Experimental demonstration of a fiber Bragg grating accelerometer”, IEEE. Photo. Technol. Lett., Vol. 8, pp. 1677-1679, 1996.
2. Cooley, J. W. and Tukey, J. W., “An algorithm for machine calculation of complex Fourier series,”, Math. Computation, Vol. 19, pp. 297-301, 1965.
3. Friedlander, B. and Porat, B., “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 2, pp. 169-180, 1989.
4. Friedlander, B. and Zeira, A., “Over-sampled Gabor representation for transient signals,” IEEE Trans. Signal Processing, Vol. 43, No. 9, pp. 2088-2094, 1995.
5. Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H., and Wang, C. L., “Ground vibrations produced by rock motions and debris flows,” J. Geophys. Res., Vol. 112, F02014, doi:10.1029/2005JF000437, pp. 1-20, 2007.
6. Huang, C. J., Yeh, C. H., Chen, C. Y., and Chang, S. T., “Ground vibrations and airborne sounds generated by motion of rock in a river bed, Natural Hazards and Earth System Sciences, Vol. 8, pp. 1139-1147. 2008.
7. Itakura, Y., Kitajima, T., Endo, K., and Sawada, T., “A new double-axes accelerometer debris-flow detection system,” The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, pp. 319-324, 2000.
8. Itakura, M., Fujii, N., and Sawada, T., “Basic characteristics of ground vibration sensors for the detection of debris flow,” Phys. Chem. Earth (B), Vol. 25, No.9, pp.717-720, 2000.
9. Itakura, Y., Inaba, H., and Sawada, T., ”A debris-flow monitoring devices and methods bibliography,” Natural Hazards and Earth System Sciences, Vol. 5, pp. 971–977, 2005.
10. Johnson, A. M. and Rodine, J. R., ”Debris flow,” Slope Instability, pp. 257–361. John Wiley & Sons. 1984.
11. Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., Putnam, M. A., and Friebele, E. J., “Fiber Grating Sensor,” J. Lightwave Technol., Vol. 15,No. 8, pp.160-176., 1997.
12. Morey, W. W., Meltz, G., and Glenn, W. H., “ Fibre optic Bragg grating sensors,” Proceedings of SPIE 1169, pp. 98-107, 1989.
13. Okuda, S., Okunishi, K., and Suwa, H., “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130, 1980.
14. Shearer, P. M., “Introduction to seismology,” Cambridge University Press,1999.
15. 台灣水土保持局及中華水土保持學會,「水土保持手冊」,1992。
16. 台灣交通部中央氣象局,「地震百問」,2003。
17. 吳積善、康志成、田連權,「雲南蔣家溝泥石流觀測研究」,北京,科學出版社,1990。
18. 周必凡、李德基、羅德富、呂儒仁、楊慶溪(1991),“泥石流防治指南”,科學出版社,北京,第 96-108 頁。
19. 徐明同,「地震學」,黎明出版社,1979。
20. 徐明同,「地震工程」,黎明出版社,1983。
21. 高橋保,「橫跨土石流潛勢區域之橋梁工程問題」,土木工程防災系列研習會論文集,中央大學土木系橋梁工程研究中心,1997。
22. 簡旭君,「光纖光柵應變管之研發」,國立交通大學土木工程研究所碩士論文,2003。
23. (蘇)B. C. 斯捷潘諾夫著,孟河清譯「泥石流與泥石流體的基本特性及其量測方法」,科學技術文獻出版社重慶分社,1986。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw