進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2607201016331600
論文名稱(中文) 溫度對電化學沉積鎳金屬膜特性之研究
論文名稱(英文) Effect of Temperature on Characteristics of Nickel Films Using Electrochemical Deposition
校院名稱 成功大學
系所名稱(中) 機械工程學系專班
系所名稱(英) Department of Mechanical Engineering (on the job class)
學年度 98
學期 2
出版年 99
研究生(中文) 陳慶峰
研究生(英文) Ching-Feng Chen
學號 n1794113
學位類別 碩士
語文別 中文
論文頁數 104頁
口試委員 指導教授-鍾震桂
口試委員-陳國聲
口試委員-吳博雄
中文關鍵字 低溫  電化學沈積  脈衝 
英文關鍵字 low temperature  electrodeposition  pulse 
學科別分類
中文摘要 本研究利用低溫直流與低溫脈衝電化學沉積金屬鎳膜,針對直流和脈衝電壓進行不同的製程,探討溫度、頻率和工作週期等實驗參數對於金屬鎳膜的微結構與機械性質的影響,並比較低溫直流與低溫脈衝電化學方法沉積鎳膜特性的差異。
本實驗調變溫度、頻率與工作週期實驗參數,進行鎳膜沉積後,以表面粗度儀 (α-step)量測鎳膜厚度,計算沉積速率;以低掠角X光繞射儀(GIXRD)分析其微結構與結晶相;以原子力電子顯微鏡(AFM)掃描式電子顯微鏡(SEM)觀察鎳膜表面形貌;以X光光電子電子能譜檢測化學成份,以CCD camera分析其灰階影像,最後以奈米壓痕器檢測鎳膜的機械性質。
實驗結果顯示,由低溫直流電化學沉積改變溫度製程參數,鎳膜的沉積速率會隨著溫度降低而減少,鎳膜表面形貌也會較平整,從GIXRD結果得知晶粒尺寸在25.22 nm以下,經機械性質分析後,0 °C時硬度最高可達6.37±0.62 GPa。
由低溫脈衝電化學沉積結果,鎳膜的沉積速率會隨著溫度降低而減少,鎳膜表面形貌會有較大突起物,從GIXRD結果得知晶粒尺寸晶粒尺寸在24.50 nm以下,經機械性質分析後,20 °C時硬度最高可達5.64±0.17 GPa。在低溫脈衝沉積條件試片會形成鎳金屬氧化物。當溫度5 °C頻率80 Hz 與工作週期75%時氧成份比例最大達68.9%,灰階分析結果得知鎳膜表面最暗(黑)。預期可應用在微電子材料、微機電材料、儲能材料與生醫材料等領域。
英文摘要 In this study, we utilized both direct current (DC) and pulse plating modes to deposite nickel films by electrodeposition method in low temperature state. The variation of microstructure and mechanical properties of films between modulated parameters such as temperature, frequency and duty cycle were investigated.
In the experiment process, α-step was used to measure the thickness of nickel films as well as deposition rate. The microstructure and chemical composition were characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray photoelectron photoelectron spectroscopy, respectively. Surface morphology was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Gray scale image of these films were performed by CCD camera. Mechanical properties of these films were showed by nanoindentation system.
In direct current plating mode, the experimental results showed that depositing rate and grain size decreased with decreasing temperature. SEM and AFM image exhibited more smooth surface morphology observed at lower temperature state. The highest hardness value was 6.37±0.62 GPa with temperature of 0 °C.
In the pluse plating mode, the particles appeared more easily on the surface of nickel films at lower temperature state due to the formation of nickel oxide. GIXRD revealed that nickel film was polycrystalline and grain size was below 24.5 nm. The highest hardness value was 5.64 GPa with temperature of 20 °C. The film with highest oxygen ratio achieved 68.9 % was darkest as temperature at 5 °C, frequency at 80Hz and Duty at 75%. The nickel films are expected to apply in the microelectronic, MEMS and bio-material fields.
論文目次 中文摘要 I
Abstract II
誌謝 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 本文架構 6
第二章 理論基礎與文獻回顧 7
2-1 電化學基本理論 7
2-1-1 電化學反應 7
2-1-2 電雙層理論 10
2-1-3 離子質傳 12
2-1-4 鎳電解質溶液的特性 13
2-1-5 影響電鍍的因素 16
2-2 電化學沉積鎳膜文獻回顧 18
2-2-1 傳統高溫直流電化學沉積 18
2-2-2 室溫脈衝電化學沉積 19
2-2-3 合金電化學沉積 20
2-2-4 低溫電化學沉積 20
第三章 實驗步驟與方法 22
3-1 實驗流程 22
3-2 實驗材料 26
3-3 實驗設 27
3-3-1 低溫電化學沉積系統 27
3-4 分析檢測儀器 29
3-4-1 表面粗度儀 (Stylus profilometry, α-Step) 29
3-4-2 低掠角X光繞射儀 (Glancing Incident angle X-Ray Diffraction, GIXRD) 30
3-4-3 原子力電子顯微鏡 (Atomic Force microscopy, AFM) 31
3-4-4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 33
3-4-5 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, SEM)34
3-4-6 奈米壓痕器(Nano Indenter) 36
3-4-7 CCD Camera40
第四章 結果與討論 42
4-1 低溫直流電化學沉積鎳膜在不同溫度的影響 42
4-1-1 沉積速率 42
4-1-2 GIXRD微結構與晶粒大小 44
4-1-3 AFM表面形貌分析 46
4-1-4 機械性質 49
4-2 低溫脈衝電化學沉積鎳膜在不同溫度的影響51
4-2-1 沉積速率51
4-2-2 GIXRD微結構與晶粒大小 53
4-2-3 SEM表面形貌分析 55
4-2-4 XPS化學成份分析 58
4-2-5 灰階分析 60
4-2-6 機械性質 63
4-3 低溫脈衝電化學沉積鎳膜在不同頻率的影響 66
4-3-1 沉積速率 66
4-3-2 GIXRD微結構與晶粒大小 68
4-3-3 SEM表面形貌分析70
4-3-4 XPS化學成份分析 73
4-3-5 灰階分析 75
4-3-6 機械性質 77
4-4 低溫脈衝電化學沉積鎳膜在不同工作週期的影響 80
4-4-1 沉積速率 80
4-4-2 GIXRD微結構與晶粒大小 82
4-4-3 SEM表面形貌分析 84
4-4-4 XPS化學成份分析 87
4-4-5 灰階分析 89
4-4-6 機械性質 91
第五章 結論與未來工作 93
5-1 結論 93
5-2 本文貢獻 94
5-3 未來工作 95
參考文獻 97

參考文獻 [1]H.S. Nalwa, “ Nanostructured materials and nanotechnology“, Academic Press, San Diego, 2002.
[2]W. Michael, ”Nanotechnology : basic science and emerging”, technologies Chapman & Hall, Boca Raton, 2002.
[3]M. Ratner and D. Ratner, “Nanotechnology : a gentle introduction to the next big idea”, Prentice Hall Professional Technical Reference, Upper Saddle River, 2003.
[4]U. Schulte, “Nanotechnology : global strategies, industry trends and applications “, John Wiley & Sons, Chichester, 2005.
[5]O.M. Glenn amd B.H. Juan, “Electroless plating : fundamentals and applications”, The Society, Orlando, 1990.
[6]M. Paunovic, ”Fundamentals of electrochemical deposition”, Wiley Interscience, Hoboken, 2006.
[7]Q. Yang, J. Sha, X. Ma and D. Yang, “Synthesis of NiO nanowires by a sol-gel process“, Materials Letters Vol.59, pp.1967-1970, 2005.
[8]M. Grde and K. Klimek, “A quartz crystal microbalance study on a metallic nickel electrode”, Journal of Solid State Electrochemistry Vol.8, pp.390-397, 2004.
[9]S.P. Jiang and S.H. Chan, “A review of anode materials development in solid oxide fuel cells“, Journal of Materials Science Vol.39, pp.4405-4439, 2004.
[10]F.B. Zhang, Y.K. Zhou and H. Li, “Nanocrystalline NiO as an electrode material for electrochemical capacitor”, Materials Chemistry and Physics Vol.83, pp.260-264, 2004.
[11]Y.Y. Liang, S.J. Bao and H.L. Li, “Nanocrystalline nickel cobalt hydroxides ultrastable Y zeolite composite for electrochemical capacitors”, Journal of Solid State Electrochemistry Vol.11, pp.571-576, 2006.
[12]N.S. Begum1, H.A. Farveez and K.R. Gunashekar, “Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique”, Bulletin of Materials Science Vol.31, pp. 747-751, 2008.
[13]I. Valyukh, S. Green, H. Arwin, G.A. Niklasson and C.G. Granqvist, “Spectroscopic ellipsometry of electrochromic tungsten oxide characterization and nickel oxide thinfilms made by sputter deposition”, Solar Energy Materials & Solar Cells Vol.94, pp.724-732, 2010.
[14]S. Giuffrida, G.G. Condorelli, L.L. Costanzo1, G. Ventimiglia1, R.L. Nigro, M. Favazza1, E. Votrico, C. Bongiorno and I.L. Fragala, “Nickel nanostructured materials from liquid phase photodeposition”, Journal of Nanoparticle Research Vol.9, pp.611-619, 2007.
[15]C. Lin, S.A. Al-Muhtaseb and J.A. Ritter, “Thermal Treatment of Sol-Gel Derived Nickel Oxide Xerogels”, Journal of Sol-Gel Science and Technology Vol.28, pp.133-141, 2004.
[16]J.Y. Park, K.S. Ahn, Y.C. Nah, H.S. Shim and Y.E. Sung, “Electrochemical and Electrochromic Properties of Ni Oxide Thin Films Prepared by a Sol–Gel Method”, Journal of Sol-Gel Science and Technology Vol.31, pp.323-328, 2004.
[17]P. Gronchi, A. Kaddouri, P. Centola and R.D. Rosso,“Synthesis of Nickel Supported Catalysts for Hydrogen Production by Sol-Gel Method“Journal of Sol-Gel Science and Technology Vol.26, pp.843-846, 2004.
[18]J.L. Bi, G.Y. Gau, T.L. Lai, Y.Y. Shu and C.B. Wang, “Preparation and Thermal Characterization of Nanosized Nickel Oxide”, Journal of the Chinese Chemical Society Vol.64, pp.161-170, 2006.
[19]K.P. Wong, K.C. Chan, and T.M. Yue, “A study of hardness and grain size in pulse current electroforming of nickel using different shaped waveforms”, Journal of Applied Electrochemistry Vol.31, pp25-34, 2001.
[20]W.J. Lorenz and W. Plieth, “Electrochemical nanotechnology”, Wiley-VCH, Weinheim, 1998.
[21]T.M. Rodgers, “Handbook of practical electroplating”, The Macmillan Company, New York, 1959.
[22]C.E. Mortimer, “Chemistry : a conceptual approach”, Van Nostrand, New York, 1975.
[23]J. Bockris, “Comprehensive treatise of electrochemistry”, Plenum Press, New York, 1981.
[24]M.A. Christopher and A.M. Oliveira, “Electrochemistry : principles, methods, and applications”, Oxford University Press, New York, 1993.
[25]A.J. Bard and L.R. Faulkner, ” Electrochemical methods: fundamentals and applications” , Wiley, New York, 1980.
[26]謝淵清, “電化學反應程序”, 徐氏基金會, 台北巿, 1983.
[27]A.J. Bard and L.R. Faulkner, ”Electrochemical methods : fundamentals and applications”, John Wiley, New York, 2001.
[28]郁仁貽, ”實用理論電化學”, 徐氏基金會, 臺北巿, 1991.
[29]R.N. Adams, “Electrochemistry at solid electrodes”, M. Dekker, New York, 1969.
[30]G. Prentice, “Electrochemical engineering principles”, Prentice Hall, Englewood Cliffs, 1991.
[31]W. Blum and G.H. Hogaboom, “Principles of electroplating and electroforming”, McGraw Hill, New York, 1949.
[32]吳浩清, ”電化學動力學”, 科技圖書, 台北市, 2001.
[33]V.S. Bagotsky, ” Fundamentals of electrochemistry”, Wiley, Hoboken, 2006.
[34]M. Schlesinger and M. Paunovic, ”Modern electroplating”, Wiley, New York, 2000.
[35]宋仰恆, ”鍍鎳的理論與實務”, 徐氏基金會, 台北巿, 1970.
[36]J. Koryta, J. Dvorak and L. Kavan, ”Principles of electrochemistry”, Wiley, Chichester, 1993.
[37]F. A. Lowenheim, ” Modern electroplating”, Wiley, New York, 1963.
[38]J.K. Dennis and T.E. Such, ” Nickel and chromium plating”, Woodhead Publiishing, Cambridge, 1993.
[39]A.K. Graham, “Electroplating engineering handbook”, Reinhold Publishing, New York, 1962.
[40]A.G. Gray, ”Modern electroplating”, Wiley, New York, 1953.
[41]A. Brenner, ”Electrodeposition of alloys : principles and practice”, Academic Press, New York, 1963.
[42]C.K. Chung and W.T. Chang, “Effect of pulse frequency on the morphology and nanoindentation property of electroplated nickel films”, Microsyst Technol Vol.13, pp. 537-541, 2006.
[43]N.S. Qu, K.C. Chan and D. Zhu , ”Surface roughening in pulse current and pulse reverse current electroforming of nickel”, Surface and Coatings Technology Vol.91, pp220-224, 1997.
[44]K.C. Chan, N.S. Qu and D. Zhu, “Effect of reverse pulse current on the internal stress of electroformed nickel“, Journal of Materials Processing Technology Vol.63, pp.819-822, 1997.
[45]K.P. Wong, K. Chan and T.M. Yue, “A study of surface finishing in pulse current electroforming of nickel by utilizing different shaped waveforms”, Surface and Coatings Technology Vol.115, pp.132-139, 1999.
[46]Y.M. Yeh , G.C. Tu and T.H. Fang, “Nanomechanical properties of nanocrystalline Ni-Fe mold insert “, Journal of Alloys and Compounds Vol.372, pp.224-230, 2004.
[47]Y.M. Yeh, C.S. Chen, M.H. Tsai, Y.C. Shyng and S.Y. Lee “Effect of Pulse-Reverse Current on Microstructure and Properties of Electroformed Nickel-Iron Mold Insert”, Japanese Journal of Applied Physics Vol.44, pp.1086-1090, 2005.
[48]C.K. Chung and W.T. Chang, “Effect of pulse frequency and current
density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films”, Thin Solid Films Vol.517, pp.4800- 4804, 2009.
[49]M. Duch, J. Esteve, E.G.´Omez and R.P.´Castillejos, ”Electrodeposited Co-Ni alloys for MEMS”, Journal of Micromechanics and Microengineering Vol.12, pp.400-405, 2002.
[50]C.L. Aravinda, S.M. Mayanna, P. Bera, V. Jayaram and A.K. Sharma, ”XPS and XAES investigations of electrochemically deposited Cu-Ni solar selected black coatings on molybdenum substrate”, Journal of Materials Science Letters Vol.21, pp.205-208, 2002.
[51]G. Qiao, T. Jing,N. Wang, Y. Gao, X. Zhao, J. Zhou and W. Wang, “Effect of Current Density on Microstructure and Properties of Bulk Nanocrystalline Ni-Co Alloys Prepared by JED“, Journal of The Electrochemical Society Vol.153, pp.305-308, 2006.
[52]C.K. Chung, W.T. Chang, R.X. Zhou, “Effect of the Co content on the work function of the electroplated Ni-Co films”, Microsystem Technologies Vol.14, pp.1389-1394, 2008.
[53]C.K. Chung, R.X. Zhou, W.T. Chang, “The anomalous behavior and properties of Ni-Co films codeposited in the sulfamate-chloride solution”, Journal of Micromechanics and Microengineering Vol.14, pp.1279-1284, 2008.
[54]E. Pellicer, A. Varea, S. Pane, B.J. Nelson, E. Menendez, M. Estrader, S. Surinach, M.D. Baro, J. Nogues and J. Sort, ”Nanocrystalline Electroplated Cu-Ni : Metallic Thin Films with Enhanced Mechanical Properties andTunable Magnetic Behavior”, Advanced Functional Materials Vol.20, pp.983-991, 2010.
[55]H. Masuda and K. Fukuda, ”Ordered metal nonohole arrays made by a two-step replication of honeycomb structures of anodic alumina” Journal of Science Vol.268, pp.1466-1468, 1995.
[56]J. Yu, L. Wang, L. Su and H. Yang, ”Temperature effects on the electrodeposition of zinc”, Journal of the Electrochemical Society Vol.150, pp.19-23, 2003.
[57]W. Tohru, ”Nano-plating :microstructure control theory of plated film and data base of plated film microstructure“, Elsevier, Amsterdam 2004.
[58]陳泰盛, “反應式共濺鍍鉭-矽-氮(Ta-Si-N)奈米複合薄膜之微結構與機械性質研究”, 成功大學碩士論文, 2006.
[59]D.A. Skoog, F.J. Holler and S.R. Crouch, ”Principles of instrumental analysis”, Thomson, Australia, 2007.
[60]C.C. Lin, S. Lin and S.Y. Lee, “Nano-scale Measurement of Biomolecule by Atomic Force Microscopy”, The Chinese Chemical Society Vol.67, pp.83-91, 2009.
[61]T.L. Barr, “Modern ESCA : the principles and practice of x-ray photoelectron spectroscopy”, CRC press, Boca Raton, 1994.
[62]朱志傑, “反應式共濺鍍鈦-矽-氮薄膜之微結構與機械性質研究”, 成功大學碩士論文, 2008.
[63]W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research Vol.7, pp.1564-1583, 1992.
[64]L.L. Shaw, A.L. Ortizb and J.C. Villegasc, “Hall–Petch relationship in a nanotwinned nickel alloy”, Scripta Materialia Vol.58, pp.951-954, 2008.
[65]B.V. Ginneken and J.J. Koenderink, ”Texture Histograms as a Function of Irradiation and Viewing Direction”, International Journal of Computer Vol.31, pp.169-184, 1999.
[66]T. Fritz, W. Mokwa and U. Schnakenberg, ”Material characterisation of electroplated nickel structures for microsystem technology”, Electrochimica Acta Vol.47, pp.55-60, 2001.
[67]L. J. Durney, ”Electroplating engineering handbook”, Van Nostrand Reinhold, New York, 1984.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw