參考文獻 |
Aydogdu, M., A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E, 41, 1651-1655, 2009.
Aydogdu, M., Longitudinal wave propagation in multiwalled carbon nanotubes, Compos. Struct., 107, 578-584, 2014.
Bert, C.W. and Malik, M., Differential quadrature: A powerful new technique for analysis of composite structures, Compos. Struct., 3, 179-189, 1997.
Brischetto, S. and Carrera, E., Refined 2D models for the analysis of functionally graded piezoelectricity plates, J. Intell. Mater. Syst. Struct., 20, 1783-1797, 2009.
Brischetto, S. and Carrera, E., Advanced mixed theories for bending analysis of functionally graded plates, Comput. Struct., 88, 1474-1483, 2010.
Carrera, E., An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct., 50, 183-198, 2000.
Carrera, E., Assessment of theories for free vibration analysis of homogeneous and multilayered plates, Shock Vib., 11, 261-270, 2004.
Chen, S.M., Wu, C.P. and Wang, Y.M., A Hermite DRK interpolation-based collocation method for the analysis of Bernoulli-Euler beams and Kirchhoff –Love plates, Comput. Mech., 47, 425-453, 2011.
Civalek, O. and Demir, C., A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Appl. Math. Comput., 289, 335-352, 2016.
Cowper, G., The Shear Coefficient in Timoshenko’s Beam Theory, J. Appl. Mech., 33, 335-340, 1966.
Demir, C. and Civalek, O., A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nanobeams surrounded by an elastic matrix, Compos. Struct., 168, 872-884, 2007.
Du, H., Lim, M. and Lin, R., Application of generalized differential quadrature method to structural problems, Int. J. Numer. Methods Eng., 37, 1881-1896, 1994.
Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., 218, 7406-7420, 2012.
Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, E.F., Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Appl. Math. Modell., 37, 4787-4797, 2013a.
Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., 96, 82-88, 2013b.
Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A., Mechanical analysis of higher order gradient nanobeams, Appl. Math. Comput., 229, 260-272, 2014a.
Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A., Static and buckling analysis of functionally graded Timoshenko nanobeams, Appl. Math. Comput., 229, 283-295, 2014b.
Eltaher, M.A., El-Borgi, S. and Reddy, J.N., Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs, Compos. Struct., 153, 902-913, 2016.
Eringen, A.C., Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1-16, 1972.
Eringen, A.C. and Edelen, D., On nonlocal elasticity, Int. J. Eng. Sci., 10, 233-248, 1972.
Eringen, A.C., Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
He, X.Q., Kitipornchai, S. and Liew, K.M., Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids, 53, 303-326, 2005a.
He, X.Q., Kitipornchai, S., Wang, C.M. and Liew, K.M., Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells, Int. J. Solids Struct., 42, 6032-6047, 2005b.
Khadem, S.E., Rasekh, M. and Toghraee, A., Design and simulation of a carbon nanotube-based adjustable nano-electromechanical shock switch, Appl. Math. Modell., 36, 2329-2339, 2012.
Li, M., Tang, H.X. and Roukes, M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nature Nanotechnol, 2, 114-120, 2007.
Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K., Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97, 481-494, 2003.
Lignola, G.P., Spena, F.R., Prota, A. and Manfredi, G., Exact stiffness-matrix of two nodes Timoshenko beam on elastic medium-An analogy with Erigen model of nonlocal Euler-Bernoulli nanobeams, Comput. Struct., 182, 556-572, 2017.
Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S. and El-Borgi, S., Global stability of microbeam-based electrostatic microactuators, J. Vib. Control, 16, 721-748, 2010.
Nguyen, N.T., Kim, N.I. and Lee, J., Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams, Finite Elem. Anal. Des., 106, 65-72, 2015.
Pei, J., Tian, F. and Thundat, T., Glucose biosensor based on the microcantilever, Anal. Chem., 76, 292-297, 2004.
Pradhan, S.C., Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory, Finite Elem. Anal. Des., 50, 8-20, 2012.
Pradhan, S.C. and Mandal, U., Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect, Physica E, 53, 223-232, 2013.
Preethi, K., Rajagopal, A. and Reddy, J.N., Surface and nonlocal effects for nonlinear analysis of Timoshenko beams, Int. J. Non-linear Mech., 76, 100-111, 2015.
Reddy, J.N., Energy and Variational Methods in Applied Mechanics, Wiley-Interscience publication, New York, 1984a.
Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill Book Company, New York, 1984b.
Reddy, J.N., Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45, 288-307, 2007.
Reddy, J.N. and Pang, S.D., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Appl. Phys. Lett., 103, 023511, 2008.
Reddy, J.N. and El-Borgi, S., Eringen’s nonlocal theories of beams accounting for moderate rotations, Int. J. Eng. Sci., 82, 159-177, 2014a.
Reddy, J.N., El-Borgi, S. and Romanoff, J., Nonlinear analysis of functionally graded microbeams using Eringen’s nonlocal differential model, Int. J. Non-linear Mech., 67, 308-318, 2014b.
Reissner, E., On a certain mixed variational theorem and a proposed application, Int. J. Numer. Methods Eng., 20, 1366-1368, 1984.
Reissner, E., On a mixed variational theorem and on shear deformable plate theory, Int. J. Numer. Methods Eng., 23, 193-198, 1986.
Ru, C.Q., Column buckling of multiwalled carbon nanotubes with interlayer radial displacements, Phys. Rev. B, 62, 16962, 2000.
Ru, C.Q., Elastic Models for Carbon Nanotubes, Encyclopedia Nanosci. Nanotech., 2, 731-744, 2004.
Simsek, M., Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method, Compos. Struct., 112, 264-272, 2014.
Thai, H.T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 52, 56-64, 2012.
Thai, H.T. and Vo, T.P., A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 54, 58-66, 2012.
Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S., Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, J. Phys. D-Appl. Phys., 39, 3904-3909, 2006.
Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M., Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475-481, 2008.
Wang, Q. and Wang, C., The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnol, 18, 075702, 2007.
Wang, Y.M., Chen, S.M. and Wu, C.P., A meshless collocation method based on the differential reproducing kernel interpolation, Comput. Mech., 45, 585-606, 2010.
Wu, C.P. and Lee, C.Y., Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffnes, Int. J. Mech. Sci., 43, 1853-1869, 2001.
Wu, C.P., Chiu, K.H. and Wang, Y.M., A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Comput. Mater. Continua, 18, 93-132, 2008.
Wu, C.P. and Li, H.Y., The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct., 92, 2476-2496, 2010.
Wu, C.P. and Chang, S.K., Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression, Compos. Struct., 111, 587-601, 2014.
Wu, C.P. and Lai, W.W., Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions, Compos. Struct., 122, 390-404, 2015a.
Wu, C.P. and Lai, W.W., Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method, Physica E, 68, 8-21, 2015b.
Wu, C.P. and Liu, Y.C., A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Compos. Struct., 147, 1-15, 2016.
Wu, C.P., Hong, Z.L. and Wang, Y.M., Geometrically nonlinear static analysis of an embedded multi-walled carbon nanotube and the van der Waals interaction, J. Nanomech. Micromech., 7, 04017012, 2017.
Yang, Q. and Lim, C.W., Nonlinear thermal bending for shear deformable nanobeams based on nonlocal elasticity theory, Int. J. Aerospace Lightweight Struct., 1, 89-107, 2011.
|