進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2606201815261400
論文名稱(中文) 航空器可控飛行撞地風險因素與改善策略之探討
論文名稱(英文) Exploring Risk Factors and Prevention Strategies of Controlled-Flight-Into-Terrain(CFIT)
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 106
學期 2
出版年 107
研究生(中文) 羅苡文
研究生(英文) Yi-Wen Lo
學號 R56051046
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-張有恆
口試委員-鄭永祥
口試委員-徐村和
口試委員-楊慧華
中文關鍵字 可控飛行撞地  人為因素  SHELLO模式  層級分析法 
英文關鍵字 Controlled-Flight-Into-Terrain  Human Factor  SHELLO Model  Analytic Hierarchy Process (AHP) 
學科別分類
中文摘要 在國際民航組織ICAO(2017)安全報告中,可控飛行撞地(Controlled-Flight-Into-Terrain, CFIT)被歸入高風險失事類別,且在2016亞太平洋區域年度航空安全報告書中亦統計其為近十年來,亞太平洋區域最常發生的航空意外事故類別。
本研究旨在探討航空器可控飛行撞地之風險因素,透過文獻回顧整理相關風險因素,以SHELLO模式為基礎將各風險因素做分類,再利用飛行員及專家兩階段問卷評估,針對可控飛行撞地之風險因素為研究項目,並著重相關人為因素資料分析,採用層級分析法排序風險因素之重要度,加上改善可行性評估,以找出應優先著重之風險因素。本研究以第一線飛行員為首要問卷對象,藉由飛行員評估並篩選出較重要之風險因素,在進一步經由專家問卷的方式探討其各層級風險因素之相互關係及權重,找出較重要之關鍵因素,綜合專家評估其改善可行性,排定風險因素之改善優先順序,進而降低航空器可控飛行撞地發生之風險。
研究結果顯示,「組員資源管理」、「安全態度及紀律」、「在進場中,駕駛員對於最低高度個別監視」、「對標準操作程序之遵守」、「對於進場程序之熟悉程度」、「於進場各階段對於高度檢查之程序」及「高度表設定」,上述風險因素為優先改善項目,期相關單位參考優先擬定改善策略。
英文摘要 The International Civil Aviation Organization (ICAO, 2017) identified the controlled-flight-into-terrain (CFIT) in the high-risk accident occurrence categories. Furthermore, the ICAO shows that CFIT accidents are the ones that have happened most frequently in Asia Pacific in recent years.
The purpose of this research is to explore the risk factors and the prevention strategies of CFIT. The important risk factors and the importance-achievability analysis are brought up through the questionnaire survey from the perspective of pilots and experts. The research used SHELLO model to construct the pilots human factors framework and select related risk factors, then used Analytic Hierarchy Process to analysis the relative importance of risk factors and combined with its improvement-achievability scores to serve as a suggestion for CFIT prevention.
The research shows that the “CRM”, ” Safety attitude and discipline”, “independent verification by pilot monitoring of minimum altitude during DME approach”, “standard operation procedure”, “familiarity with descent/approach procedures”, “procedures of checking crossing altitude at IAF position”, “Incorrect automation setting” and “Radio-altitude setting” are the most significant risk factors of CFIT accidents. This study also prioritizes improvement strategies in order to help management authorities improve major operational and managerial weaknesses so as to reduce the CFIT accidents.
論文目次 目錄
INTRODUCTION I
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究範圍與限制 4
1.4 研究方法 5
1.5 研究流程 6
第二章 文獻回顧 9
2.1可控飛行撞地(CFIT)之背景與定義 9
2.1.1國際民用航空組織(ICAO) 9
2.1.2 國際航空運輸協會(IATA) 10
2.1.3 美國聯邦航空管理局(FAA) 12
2.1.4小結 12
2.2 可控飛行撞地之風險因素文獻探討 12
2.2.1 可控飛行撞地風險評估檢查單 12
2.2.2 威脅與疏失管理(Threat and Error Management) 15
2.2.3航空風險因素 18
2.2.4 小結 21
2.3 CFIT個案探討 21
2.3.1 泰國航空311班機撞山事件 21
2.3.2 大韓航空801班機失事事件 23
2.3.3 中興航空BK-117失事事件 24
2.3.4 韓亞航空OZ214班機失事事件 25
2.3.5 復興航空GE222澎湖馬公失事事件 26
2.3.6 小結 27
第三章 研究方法 29
3.1 SHELL模式 29
3.2 模糊理論(Fuzzy Method) 30
3.3 層級分析法(Analytic Hierarchy Process, AHP) 31
3.4 重要性/改善可行性評估 34
第四章 可控飛行撞地風險因素研擬 35
4.1 SHELLO模式 35
4.2風險因素研擬之操作型定義與來源 37
4.3 小結 43
第五章 實證分析 44
5.1 第一階段飛行員問卷 44
5.1.1 第一階段航空器可控飛行撞地風險因素之篩選 46
5.1.2 飛行員問卷樣本檢定 52
5.2 第二階段專家問卷之風險因素重要度分析 54
5.2.1 專家問卷一致性分析 54
5.2.2 整體風險因素重要度權重值 56
5.2.3 各構面下風險因素重要度權重值 60
5.3 風險因素改善可行性評估 63
5.4 重要度與改善可行性綜合評估 66
5.5 復興GE222可控飛行撞地事件之驗證 72
第六章 結論與建議 75
6.1 結論 75
6.2 建議 79
6.3 研究限制與貢獻 81
中文參考文獻 83
英文參考文獻 84
網頁參考文獻 88
附錄一 飛航駕駛員問卷 89
附錄二 專家問卷 97

參考文獻 中文參考文獻
1. 飛航安全調查委員會,航空安全與管理季刊,2016年。
2. 史密斯,「控制飛行差錯——可控飛行撞地」,中國民航出版社,2003年。
3. 交通部民用航空局,飛航服務規範,2012年。
4. 米勒,「控制飛行差錯——疲勞」,中國民航出版社,2003年。
5. 克雷格,「控制飛行差錯——情境意識」,中國民航出版社,2003年。
6. 李雲寧、王穎駿,〈高科技環境下之風險管理─人為錯誤與飛航安全文化〉,民航季刊,第1卷,第1期,25-46頁,1999年。
7. 科恩,「控制飛行差錯——進近與著陸」,中國民航出版社,2005年。
8. 飛航安全調查委員會,「GE222航空器飛航事故調查報告」,2016年。
9. 財團法人中華民國台灣飛行安全基金會,減少進場及落地失事事件,1998年。
10. 張有恆,「飛航安全管理」,二版,華泰文化,2016年。
11. 張紹勳,「模糊多準則評估法及統計」,台灣五南圖書出版股份有限公 司,2012年。
12. 張斐章、張麗秋,「類神經網路」,東華書局,2005。
13. 黃振傑,「航空安全人為因素模式應用與評估-以航空器飛航簽派員為例」,國立高雄餐旅大學運輸與休閒服務規劃碩士學位論文,2013年。
14. 葉晉嘉、翁興利、吳濟華,〈德菲法與模糊德菲法之比較研究〉,調查研究-方法與應用,(21), 31-58,2007年。
15. 鄭永安,〈人為因素與飛航安全〉,科學發展,495期,20-24頁,2014年。
16. 蘭科弗德,「控制飛行差錯——天氣」,中國民航出版社,2003年。

英文參考文獻
1. Arthur, J. J., Prinzel, L. J., Kramer, L. J., Bailey, R. E., & Parrish, R. V. (2003). CFIT prevention using synthetic vision. In Enhanced and Synthetic Vision 2003 (Vol. 5081, pp. 146-158). International Society for Optics and Photonics.
2. Australian Transport Safety Bureau(2016) . Aviation safety investigations & reports. Controlled flight into terrain involving Agusta A109, VH-XPB, Ellerston, New South Wales.
3. Boeing Commercial Airplane Group(2015). Controlled Flight Into Terrain(CFIT).
4. Boeing Commercial Airplane Group(2017).Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations.pp2007-2016, Seattle, Washington.
5. Buckley, J. J.(1985). Fuzzy hierarchical analysis. Fuzzy sets and systems, 17(3), 233-247.
6. Budd, L., & Ison, S.(2016). Air Transport Management: An international perspective.
7. Chang, D. Y.(1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95(3), 649-655.
8. Chang, Y. H., & Yeh, C. H.(2010). Human performance interfaces in air traffic control. Applied ergonomics, 41(1), 123-129.
9. Chang, Y. H., Yang, H. H., & Hsiao, Y. J.(2016). Human risk factors associated with pilots in runway excursions. Accident Analysis & Prevention, 94, 227-237.
10. Chang, Y.H., & Wang, Y.C.(2010). Significant human risk factors in aircraft maintenance technicians. Saf. Sci. 48, 54–62.
11. Chang, Y.H., & Wong, K.M.(2012). Human risk factors associated with runway incursion. J. Air Transp. Manag. 24, 25–30.
12. Chen, G., & Pham, T. T.(2000).Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems. CRC press.
13. Chen, K.(2013). CFIT Risk Assessment Model on Destination Airport Based on Fuzzy Linguistic.
14. Dismukes, R.K., & Berman, B.(2010). Checklists and Monitoring in the Cockpit: Why Crucial Defenses Sometimes Fail. NASA/TM—2010-216396
15. Dozic, S., Lutovac, T., & Kalić, M.(2017). Fuzzy AHP approach to passenger aircraft type selection. Journal of Air Transport Management.
16. Edwards, E.(1973). Man and machine- Systems for safety(Man machine systems for flight safety, studying accidents, human factors in system design and implementation of personnel). Outlook on safety, 21-36.
17. Federal Aviation Adminstration (2003). General Aviation Controlled Flight into Terrain Awareness. Advisory Circular 61-134.
18. Flight Safety Foundation(2009).CFIT Checklist.
19. Flight Safety Foundation(2014). A Practical Guide for Improving Flight Path Monitoring.
20. Gong, L., Zhang, S., Tang, P., & Lu, Y.(2014). An integrated graphic–taxonomic–associative approach to analyze human factors in aviation accidents. Chinese Journal of Aeronautics, 27(2), 226-240.
21. Hadjimichael, M.(2009). A fuzzy expert system for aviation risk assessment. Expert Systems with Applications, 36(3), 6512-6519.
22. Hawkins, F. H.(1984). Human Factors education in European air transport operations. In Breakdown in Human Adaptation to ‘Stress’(pp. 329-362). Springer Netherlands.
23. Helmreich, R. L.(2001).Culture at Work in Aviation and Medicine: National, Organizational and Professional Influences
24. Helmreich, R. L., & Davies, J. M.(2004). Culture, threat, and error: lessons from aviation. Canadian Journal of Anesthesia/Journal canadien d'anesthésie, 51, R1-R4.
25. Hong, S. J., Lee, K. S., Seol, E. S., & Young, S.(2016). Safety perceptions of training pilots based on training institution and experience. Journal of Air Transport Management, 55, 213-221.
26. International Air Transport Association(2005). Safety Report.
27. International Air Transport Association(2015a). Controlled Flight Into Terrain Accident Analysis Report.
28. International Air Transport Association(2015b). Safety Report.
29. International Air Transport Association(2016). A Study of Terrain Awareness Warning System Capability and Human Factors in CFIT Accidents 2005-2014. Edition 1.
30. International Civil Aviation Organization(1993). Human Factor Digest No.7.Circular 240-AN/144
31. International Civil Aviation Organization (1998).Human Factors Training Manual, first ed. International Civil Aviation Organization, Doc. 9683-AN/950.
32. International Civil Aviation Organization(2015a).Safety Report.
33. International Civil Aviation Organization(2015b).Threat and Error Management (TEM) in Air Traffic Control
34. International Civil Aviation Organization(2016a). Annual Safety Report- Asia Pacific Regional.
35. International Civil Aviation Organization(2016b). Asia Pacific Regional Aviation Safety Team (APRAST/1) APRAST/1-WP/5 Agenda Item 16.
36. International Civil Aviation Organization(2016c). Safety Report.
37. Ishikawa, A., Amagasa, M.(1993). The Max-min Delphi Method and Fuzzy Delphi Method via Fuzzy Integration, Fuzzy sets and systems, Vol.55, No.3, pp.241-253.
38. Khatwa, R., & Roelen, A. L. C.(1996). An Analysis of Controlled Flight Into Terrain(CFIT) Accidents of Commercial Operators 1988 Through 1994. Nationaal Lucht-en Ruimtevaartlaboratorium.
39. Klir, G., & Yuan, B.(1995). Fuzzy sets and fuzzy logic(Vol. 4). New Jersey: Prentice hall.
40. Laarhoven, P. J. M, Pedrycz, W., 1983., A Fuzzy Extension of Saaty’s Priority Theory, Fuzzy Sets and system, Vol.11, No.1-3, pp.229-241 .
41. Lewis, C. P. E., CSP.(2004). Decision Making, Flight safety, Flight Safety Foundation-Taiwan, pp.27-28.
42. Makarowski, R., Makarowski, P., Smolicz, T., & Plopa, M.(2016). Risk profiling of airline pilots: Experience, temperamental traits and aggression. Journal of Air Transport Management, 57, 298-305.
43. McDonald, N., Corrigan, S., Daly, C., & Cromie, S.(2000). Safety management systems and safety culture in aircraft maintenance organisations. Safety Science, 34(1), 151-176.
44. Merritt, A., & Klinect, J.(2016).Defensive Flying for Pilots: An Introduction to Threat and Error Management. The University of Texas Human Factors Research Project
45. National Transportation Safety Board(2012). Aircraft Accident/Incident Database.
46. Reason, J.(1990). Human errors, New York: Cambridge University Press.
47. Reason, J.(2000). Human error: models and management. BMJ: British Medical Journal, 320(7237), 768.
48. Saaty, T.L.(1980). The Analytic Hierarchy Process. McGraw-Hill, New York.
49. Saaty, T.L.(2004). Decision making—the analytic hierarchy and network processes (AHP/ANP). Journal of systems science and systems engineering, 13(1), 1-35.
50. Sexton, J. B., Thomas, E. J., & Helmreich, R. L.(2000). Error, stress, and teamwork in medicine and aviation: cross sectional surveys. Bmj, 320(7237), 745-749.
51. Shappell, S. A., & Wiegmann, D. A.(1998). A human error analysis of general aviation controlled flight into terrain accidents occurring between 1990-1998. FEDERAL AVIATION ADMINISTRATION OKLAHOMA CITY OK CIVIL AEROMEDICAL INST.
52. Transport Canada(2003). Human performance factors for elementary work and servicing, TP141751E.
53. Von Thaden, T. L. (2003). Information behavior among commercial aviation CFIT accident flight crews: transcript analyses. In Proceedings of the 12th International Symposium on Aviation Psychology. Columbus, OH: The Ohio State University (CD-ROM).
54. Wang, Y. M., & Chin, K. S.(2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52(4), 541-553.
55. Wang, Y., Jung, K. A., Yeo, G. T., & Chou, C. C.(2014). Selecting a cruise port of call location using the fuzzy-AHP method: A case study in East Asia. Tourism Management, 42, 262-270.
56. Wang, Y.Y., & Wang, Y.(2008). Multidimensional analysis model of accident causes resulted from human factors [J]. Journal of Traffic and Transportation Engineering, 2, 022.
57. Westrum, R.(1996). Human factors experts beginning to focus on organizational factors in safety. ICAO journal, 51(8), 6-8.
58. Wiener, EL.(1997).Controlled Flight into Terrain Accidents: System-Induced Errors. The Journal of the Human Factors and Ergonomics Society, , 19(2),171-181.
59. Yeh, C. H., & Chang, Y. H. (2009). Modeling subjective evaluation for fuzzy group multicriteria decision making. European Journal of Operational Research, 194(2), 464-473.
60. Zhang, PP., & Wang, YG.(2006) Multi-level fuzzy integrated evaluation of aviation safety based on SHEL model. Proceedings of Chinese professional safety-health association 2006 annual conference.

網頁參考文獻
1. 交通部民用航空局。
https://www.caa.gov.tw/big5/index.asp
2. 飛航安全調查委員會(ASC)。
https://www.asc.gov.tw/main_ch/index.aspx
3. AIRPORT COOPERATIVE RESEARCH PROGRAM http://www.trb.org/ACRP/ACRP.aspx
4. Boeing Aviation Safety http://www.boeing.com/company/about-bca/aviation-safety.page
5. Civil Air Navigation Services Organization(CANSO)
https://www.canso.org/
6. FSF.Aviation Safety Network Database
http://aviation-safety.net/database/databases.php
7. International Air Transport Association (IATA) http://www.iata.org/Pages/default.aspx
8. International Civil Aviation Organization(ICAO) https://www.icao.int/Pages/default.aspx
9. NTSB. Accident Reports. https://www.ntsb.gov/investigations/AccidentReports/Pages/AccidentReports.aspx
10. NTSB. Aviation Accident Database & Synopses. https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
11. SKYbrary
https://www.skybrary.aero/index.php/Main_Page
12. The CAST/ICAO Common Taxonomy Team http://www.intlaviationstandards.org/apex/f?p=240:1
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw