系統識別號 U0026-2606201311165800
論文名稱(中文) 以嵌入式系統實現評估大鼠腦部血氧反應之近紅外光譜系統
論文名稱(英文) Embedded System Approach for Designing Near Infrared Spectroscope for Assessing Hemodynamic Response of Rat’s Brain
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 簡志軒
研究生(英文) Chih-Hsuan Chien
學號 P86004085
學位類別 碩士
語文別 英文
論文頁數 43頁
口試委員 指導教授-陳家進
中文關鍵字 近紅外光譜  嵌入式系統  缺血性中風  調變  神經血管耦合 
英文關鍵字 near infrared spectroscope  embedded system  ischemic stroke  modulation  event-related optical signal  neurovascular coupling 
中文摘要 近紅外光譜系統是以非侵入的方式,量測組織內含氧血紅素與去氧血紅素之濃度,此技術多用於腦功能活性的評估工具。本研究在建立一套近紅外光系統,作為大鼠腦部血氧反應之評估工具,並結合嵌入式系統,實現能即時監控的可攜式居家照護系統。本研究使用波長為690 nm與830 nm的連續式近紅外光源的量測方法,搭配雪崩光電二極體作為接收端。為了能將區分兩種波長之光源,調變與解調變技術在本研究中做為光源的辨識方法。將穿過組織間經由吸收及散射而衰減之光訊號帶入修正後的比爾-朗伯定律,換算出含氧血紅素與去氧血紅素的濃度變化量。對此系統的實驗分別為兩種目標下進行,一是在人體中進行上臂閉塞實驗;另一於動物模型下進行,包含缺氧實驗、缺血性中風手術之即時監測,及利用周邊電刺激方式誘發大鼠腦部產生血氧濃度的改變,並以本研究中設計的近紅外光系統量測此一訊號的變化。在上臂閉塞實驗與缺氧實驗結果顯示,在人體或動物實驗中,皆能量測到血氧濃度的改變,同樣的實驗,藉由ISS市售的頻域近紅外光儀器量測,也有此顯著的改變,兩套系統的數據結果比較也具有高度的相關性。在缺血性中風手術過程中,利用系統即時監控的特性,提供立即血氧反應的變化,做為手術成效之評估工具。而在事件性誘發光訊號的量測中,系統對於此微弱的血氧訊號,也能有效獲得,更驗證了本研究中的近紅外光系統的準確性。基於神經血管耦合原理,而成功的在給予周邊電刺激實驗中量測到大鼠腦部血氧濃度的變化,此訊號將在未來的工作中,作為評估缺血性中風大鼠的比較依據。
英文摘要 Near infrared spectroscope (NIRS) is commonly used for noninvasive brain activity assessment by determining the level of oxy-hemoglobin and deoxy-hemoglobin. Herein, we develop a NIRS system for rat’s cerebral activation assessment by measuring hemodynamic responses. The embedded system approach is adopted to achieve a real-time and portable medical device for future home-care monitoring application. We use continuous-wave laser diodes with wavelengths of 690 nm and 830 nm for light sources and avalanched photodiodes for detectors. For the purpose of differentiating two wavelengths light collected from detector, modulation and demodulation techniques are applied for coding and decoding. After receiving the attenuated optical signal caused by absorption and scattering tissue, modified Beer Lambert’s law is utilized for calculating oxy-hemoglobin and deoxy-hemoglobin concentrations. The experiments of arm occlusion in human and hypoxia monitoring in rats show the reliability of our designed system in measuring hemodynamic response in comparison to commercial system from ISS Imagent, at a correlation more than 90% between these two systems. The real-time monitoring in transient ischemic cerebral surgery experiment provides the assessment of vessel ligation and blood flow reperfusion conditions for immediate observation of ischemic stroke rat model. The event-related optical signal (EROS) measurement is recorded using an arrangement of NIRS optical probe design under peripheral electrical stimulation experiment. The successful measurement of EROS demonstrates the performance in localized cortical hemodynamic response recording. The designed embedded NIRS system can be further integrated with a treatment device. The neurovascular response of ischemic stroke rats under near infrared therapy can provide quantitative information of brain recovery based on the theory of neurovascular coupling.
論文目次 摘要---I
List of Tables---VI
List of Figures---VII
Chapter 1 Introduction---1
1.1 Brain imaging techniques---1
1.2 Neurovascular coupling and event related optical signals---2
1.3 Near infrared spectroscopy---3
1.3.1 Modified Beer-Lambert’s law---4
1.3.2 Optical differentiation and NIRS measurement system---7
1.4 Embedded system for medical device development---8
1.5 Motivations and the aims of this study---10
Chapter 2 Materials and Methods---11
2.1 Near infrared spectroscopy equipment---11
2.2 Modulation and demodulation schemes---13
2.3 Embedded system and develop environments---16
2.4 Electrical stimulator---19
2.5 Layout of NIRS probe---20
2.6 Experimental design---21
2.6.1 Human forearm occlusion experiment---21
2.6.2 Hemodynamic response in animal experiment---22
Chapter 3 Results---26
3.1 System validation of CW-NIRS system---26
3.1.1 Validation of light source---26
3.1.2 Validation of demodulator---27
3.1.3 Validation of measurement system---29
3.2 Human forearm occlusion experiment---29
3.3 Hemodynamic response in animal experiment---31
3.4 Firmware development---36
Chapter 4 Discussion and Conclusion---37
參考文獻 Bunce SC, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K (2006) Functional near-infrared spectroscopy: an engineering neuroimaging modolity. IEEE Engineering in Medicine and Biology Magzine 25:54-63.
Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ (2001) Sources of absorption and scattering contrast for near-infrared optical mammography. Academic Radiology 8:211-218.
Crenshaw AG, Komandur S, Johnson PW (2010) Finger flexor contractile properties and hemodynamics following a sustained submaximal contraction: a study using electrical stimulation and near-infrared spectroscopy. International Journal of Industrial Ergonomics 40:153-160.
D'Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Reviews Neuroscience 4:863-872.
Erickson SJ, Godavarty A (2009) Hand-held based near-infrared optical imaging devices: a review. Medical Engineering & Physics 31:495-509.
Franceschini MA, Fantini S, Thompson JH, Culver JP, Boas DA (2003) Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology 40:548-560.
Franceschini MA, Nissilä I, Wu W, Diamond SG, Bonmassar G, Boas DA (2008) Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 41:189-203.
Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Physics in Medicine and Biology 50:R1-R43.
Gratton E, Toronov V, Wolf U, Wolf M, Webb A (2005) Measurement of brain activity by near-infrared light. Journal of Biomedical Optics 10:11008.
Gratton G, Fabiani M (2001) Shedding light on brain function: the event-related optical signal. Trends in Cognitive Sciences 5:357-363.
Hamaoka T, McCully KK, Niwayama M, Chance B (2011) The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philosophical Transactions of the Royal Society A 369:4591-4604.
Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. Journal of Biomedical Optics 12:051402.
Kao WC, Chen WH, Yu CK, Hon CM, Lin SY (2005) Portable real-time homecare system design with digital camera platform. IEEE Transactions on Consumer Electronics 51:1035-1041.
Kocsis L, Herman P, Eke A (2006) The modified Beer-Lambert law revisited. Physics in Medicine and Biology 51:N91-N98.
Kondo Y, Sakatani K, Igarashi T, Hoshino T, Murata Y, Tejima E, Kano T, Katayama Y (2010) Comparison of somatosensory evoked potentials and cerebral blood oxygenation changes in the sensorimotor cortex during activation in the rat. Advances in Experimental Medicine and Biology 662:245-249.
Biomedical optics laboratory, University of London (2005) Specific extinction spectra of tissue chromophores, from the World Wide Web:
Muthalib M, Jubeau M, Millet GY, Maffiuletti NA, Nosaka K (2009) Comparison between electrically evoked and voluntary isometric contractions for biceps brachii muscle oxidative metabolism using near-infrared spectroscopy. European Journal of Applied Physiology 107:235-241.
Nighswander-Rempel SP, Kupriyanov VV, Shaw RA (2005) Assessment of optical path length in tissue using neodymium and water absorptions for application to near-infrared spectroscopy. Journal of Biomedical Optics 10:024023.
Nishimura E, Stautzenberger JP, Robinson W, Downs TH, Downs H (2007) A new approach to functional near-infrared technology. IEEE Engineering in Medicine and Biology Magzine 26:25-29.
Nissilä I, Noponen T, Heino J, Kajava T, Katila T (2005) Diffuse optical imaging. Advances in Electromagnatic Fields in Living System 4:77-129.
Pellicer A, Bravo MC (2011) Near-infrared spectroscopy: a methodology-focused review. Seminars in fetal & neonatal medicine 16:42-49.
Prakash N, Uhlemann F, Sheth SA, Bookheimer S, Martin N, Toga AW (2009) Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex. NeuroImage 47:T116-T126.
Rolfe P (2000) In vivo near-infrared spectroscopy. Biomedical Engineering 2:715-754.
Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. Journal of Physiology 11:85-108.
Sakatani K, Iizuka H, Young W (1990) Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke 21:124-132.
Siegel AM, Culver JP, Mandeville JB, Boas DA (2003) Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation. Physics in Medicine and Biology 48:1391-1403.
Son IY, Yazici B (2006) Near infared imaging and ipectroscopy for brain activity monitoring. Advances in Sensing with Security Applications 341-372.
Strangman G, Boas DA, Sutton JP (2002) Non-invasive neuroimaging using near-infrared light. Biological Psychiatry 52:679-693.
Strangman G, Franceschini MA, Boas DA (2003) Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. NeuroImage 18:865-879.
Wu WH, Bui AAT, Batalin MA, Au LK, Binney JD, Kaiser WJ (2008) MEDIC: Medical embedded device for individualized care. Artificial Intelligence in Medicine 42:137-152.
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-01起公開。

  • 如您有疑問,請聯絡圖書館