進階搜尋


下載電子全文  
系統識別號 U0026-2606201201282400
論文名稱(中文) 小分子式有機太陽能電池的表面/界面物理新見解
論文名稱(英文) New physical insights of surfaces/ interfaces for bilayer organic solar cells
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 張傑
研究生(英文) Jay Chang
學號 L78951110
學位類別 博士
語文別 中文
論文頁數 117頁
口試委員 指導教授-周維揚
共同指導教授-唐富欽
召集委員-鄭弘隆
召集委員-李佳榮
口試委員-許聯崇
口試委員-陳貞夙
口試委員-許火順
口試委員-莊陽德
口試委員-劉世鈞
中文關鍵字 小分子式有機太陽能電池  奈米壓印  氧電漿處理  紫外光處理  表面能匹配 
英文關鍵字 small molecule organic solar cells  nanoimprinting  oxygen plasma treatment  ultraviolet irradiation  matched surface energy 
學科別分類
中文摘要 有機半導體的特徵:其材料的分子化學結構可設計且具多樣性;元件製作條件簡單,製作溫度低,易於大面積製作,所以具低成本的優勢,且材料與製作過程均無毒與無汙染等優點,而受到高度重視。有機半導體電子元件大多以多層薄膜堆疊而成,因底層的表面往往會影響其後堆疊上去的薄膜結構,也影響相鄰兩層薄膜界面的物理特性,因而影響元件的操作性能與效率。
本文主題是探討小分子式有機太陽能電池元件各層表面與界面物理,從底層開始探討。其研究方法是:各相同層未表面處理與已處理各製作元件,實驗分析其薄膜表面與界面結構,相互比較其光電特性,而獲得表面/界面性質與元件效率的相關性。其目的是:逐層探討其微結構與物理機制,了解元件的基本光電機制與有效提升元件效率的方法,並掌握製作穩定元件的關鍵技術,而機制的了解可擴展到其他類似太陽能電池的研究與發展,快速提升其效率。
本實驗元件以五環素(pentacene)/駢苯衍生物(perylene tetracarboxylic derivatives)異質接面太陽能電池結構為主,以pentacene有機材料作為電子施體,PTCDI-C5 (PTCDI-C7, PTCDI-C13) 作為有機材料電子受體。基板選用銦錫氧化物(ITO)導電透明薄膜,在其上塗佈PEDOT:PSS為緩衝層。以高真空系統(~10-6 Torr)分子束磊晶方法(MBE)製作元件之各層薄膜。因其具準確的調控,得以使元件具有可靠與再現性,使物理的探討可達成精確的結果。本文包含四個研究主題:(1). 氧電漿處理ITO基板表面,使ITO基板表面與PEDOT:PSS溶液表面能匹配,讓pentacene分子能有規則排列,且使薄膜結構與表面具有較好的結晶,載子在傳輸過程中能有效到達電極,其元件效率處理後提升約1倍達到0.59%。(2). 紫外光處理PEDOT:PSS薄膜,使PEDOT:PSS分子鏈重新排列,改善PEDOT:PSS薄膜的表面粗糙度,並提升成長於其上pentacene薄膜的品質,而且PEDOT:PSS表面功函數也增加,並與pentacene薄膜HOMO值相匹配,降低載子傳輸時所需跨越的位能障礙,增加有機太陽能電池的開路電壓(Voc)與短路電流(Jsc),使元件效率提升50%達到0.76%。(3). 用奈米壓印技術壓印PEDOT:PSS表面,導致主動層p-n接觸面積增加,並侷限主動層材料晶粒的成長方向,可以有效增加太陽能電池的Jsc,使元件效率提升3倍達到1.6%。(4). 使用表面能匹配的pentacene和PTCDI-C7製作有機太陽能電池以達到高光電轉換效率。當兩者表面能匹配時,具較佳的薄膜與界面接觸,其元件效率也提升,可達到2%。此四部分的研究皆能分別有效提升有機太陽能電池的光電轉換效率,其詳細數據於文中列出。
英文摘要 Organic solar cells have been receiving significant attention for research and development studies in the world, not only green energy trend, but also they have advantage of low cost and wide applications. The special characteristic of organic semiconductors: (I) organic molecules can be designed with a great diversity of properties; (II) Low cost due to easy fabrication: low temperature, large area, roll to roll printing, plastic substrates, flexible…; (III) Materials and processing are green. Although, organic solar cells efficiency is still behind non-organic solar cells, but they are with a great potential to be mass production for practical applications.
This article focus on the studies of surface and interface physics in the small-molecule organic solar cells (OSCs) system. We analyze the film surface and interface structure compare optical and electrical properties with them. Its purpose is research of the micro-structure and physical mechanism to understand the components of the basic photoelectric mechanism and effective method to improve the efficiency, and to control the technology for the stable devices.
All OSCs for testing were fabricated on ITO-covered glass substrates. The ITO substrates were coated with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) films, which act as hole transport layers. Then, the active layers of the OSCs were constructed by molecular beam depositing a heterojunction of the pentacene and perylene tetracarboxylic derivatives (PTCDI). The investigations in this thesis include four parts. The brief descriptions of four parts are as follows, (I) This study demonstrated oxygen (O2) plasma treatment on ITO surface makes the surface energy of ITO match that of PEDOT:PSS solution, resulting in a uniform distribution of PEDOT:PSS on the ITO substrate, which decreases the bulk resistance and roughness of PEDOT:PSS film. Pentacene films on a smooth PEDOT:PSS surface exhibited better crystallization, which decreases the recombination losses and reduce the number of defects within the device. (II) We use a simple and effective process of ultraviolet (UV)-irradiation performed on thin PEDOT:PSS films to enlarge the conjugate length of PEDOT polymer-chains that underpin the notable changes in bulk film conductivity and the ionization potential for different UV-irradiated PEDOT:PSS conditions. The ionization potential of the PEDOT:PSS film can be tuned by the UV-irradiation to form a gradient band that can simultaneously match the highest occupied molecular orbital of active layer and work function of O2 plasma-treated ITO anode for the OSCs. (III) A standard OSCs embeded with PEDOT:PSS gratings enable carriers to move toward electrodes, resulting in a threefold enhancement of efficiency. Especially, the visualization of mophologies for these heterojunction layers reveals pillar-like grains that are induced by geometric effect of PEDOT:PSS gratings. (IV) A 2% efficient bilayer OSC consisting of pentacene and is fabricated. The morphology of PTCDI-C7 interestingly follows pentacene due to the matched surface energy of these two active layers and the easily deposited PTCDI-C7 monomers on the inclines of the pentacene grains. This condition results in the low trap states in the PTCDI-C7 film and at the pentacene/PTCDI-C7 interface for the enhancement of exciton dissociation and carrier transport. The research of four parts can improve the power conversion efficiency of OSCs; the detailed data are listed in the article.
論文目次 摘要………………………………………………………………………I
Abstract…………………………………………………………………III
致謝……………………………………………………………………V
目次……………………………………………………………………VI
表目錄…………………………………………………………………VIII
圖目錄…………………………………………………………………IX
第一章 前言……………………………………………………………1
1.1 小分子式有機太陽能電池的發展與重要成果回顧………… 1
1.2 有機太陽能電池的工作機制………………………………… 3
1.3 有機太陽能電池的特性公式………………………………… 7
1.4 究之材料簡介…………………………………………………10
第二章 有機半導體薄膜製備與分析量測…………………………… 17
2.1 有機分子束磊晶系統………………………………………… 17
2.2 有機半導體薄膜分析…………………………………………19
2.2.1 原子力顯微鏡…………………………………………19
2.2.2 X-ray繞射……………………………………………20
2.2.3 表面自由能(Surface Energy)量測……………………21
2.2.4 顯微拉曼散射光譜……………………………………22
2.2.5 紫外-可見光吸收光譜…………………………………24
2.2.6 時間解析螢光光譜……………………………………24
2.3 有機太陽能電池之電性量測…………………………………26
2.3.1 電流-電壓特性分析……………………………………26
2.3.2 外部量子效率…………………………………………27
第三章 氧電漿處理ITO對於有機太陽能電性的影響………………35
3.1 前言……………………………………………………………35
3.2 樣品製備與實驗步驟…………………………………………36
3.3 實驗結果與討論………………………………………………38
3.4 此章結論………………………………………………………43
第四章 紫外光處理PEDOT:PSS對有機太陽能電池的影響…………52
4.1 前言……………………………………………………………52
4.2 樣品製備與實驗步驟…………………………………………53
4.3 實驗結果與討論………………………………………………54
4.4 此章結論………………………………………………………60
第五章 奈米壓印PEDOT:PSS表面對有機太陽能電池效率的影響…74
5.1 前言……………………………………………………………74
5.2 樣品製備與實驗步驟…………………………………………75
5.3 實驗結果與討論………………………………………………76
5.4 此章結論………………………………………………………79
第六章 p-n接面對有機太陽能電池的重要影響……………………89
6.1 前言……………………………………………………………89
6.2 樣品製備與實驗步驟…………………………………………90
6.3 實驗結果與討論………………………………………………91
6.4 此章結論………………………………………………………95
第七章 總結…………………………………………………………105
7.1 總結論………………………………………………………105
7.2 未來規劃……………………………………………………106
參考文獻………………………………………………………………109
附錄 張傑博士生已發表之相關著作…………………………115
參考文獻 1. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986).
2. P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).
3. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes, Nature 376, 498 (1995).
4. A.E. Becquerel, Compt. Rend. Acad. Sci. 9, 145 (1839).
5. A. Pochetino, Acad. Lincei Rend. 15, 355 (1906).
6. D. Kearns and M.J. Calvin, Chem. Phys. 29, 950 (1958).
7. G.M. Delacote, J.P. Fillard, and F. Marco, Solid State Commun. 2, 373 (1964).
8. P. Peumans, V. Bulovi, and S.R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
9. P. Peumans, and S.R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
10. J. Xue, S. Uchida, B.P. Rand, and S.R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
11. Dipl. Ing. Klaus Petritsch, PhD Thesis, (2000)
12. P. Peumans, S. Uchida, and S.R. Forrest, Nature 425, 158 (2003)
13. S.R. Forrest, Mrs. Bull. 30, 28 (2005)
14. C. Kittel, 7th edition, Wiley, New York, p. 70 (1996) .
15. J.N. Israelachvili, 2nd edition, Academic Press, London, UK, (1992).
16. J.R. Ferraro and K.N. Kamoto, Chris W. Brown, 2nd edition, Academic Press, Boston, p. 17 (2003).
17. A.S. Davydov and McGraw-Hill, New York, p. 21 (1971).
18. T.M.K. Nedungadi, Proc. Indian Acad. Sci. 14, 221 (1941).
19. Standard Test Methods for Electrical Performance of Non-Concentrator Terrestrial Photovoltaic Cells Using Reference Cells, American Society for Testing and Materials Committee, 948
20. S.E. Fritz, T.W. Kelley, and C.D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).
21. H. Müllejans, W. Zaaiman, E. D. Dunlop, and H. Ossenbrink, Metrologia 42, 360 (2005).
22. K.I. Ishibashi, Y. Kimura, and M. Niwano, J. Appl. Phys. 103, 094507 (2008).
23. M. Lapkowski and A. Proň, Synth. Met. 110, 79 (2000).
24. S. Garreau, J. L. Duvail, and G. Louarn, Synth. Met. 125, 325 (2002).
25. J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45, 8443 (2004).
26. R.B. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, Jpn. J. Appl. Phys. 42, 4473 (2003).
27. H.L. Cheng, Y.S. Mai, W.Y. Chou, L.R. Chang, and X.W. Liang, Adv. Funct. Mater. 17, 3639 (2007).
28. F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummenlen, and O. Inganäs, Adv. Mater. 14 662 (2002).
29. Y.J. Lin, F.M. Yang, C.Y. Huang, W.Y. Chou, J. Chang, and Y.C. Lien, Appl. Phys. Lett. 91 092127 (2007).
30. A. Moliton and J.M. Nunzi, Polym. Int. 55 583 (2006).
31. C.J. Brabec, A. Cavino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, and J.C. Hummelen, Adv. Funct. Mater. 11 374 (2001).
32. N. Nonnenmacher, M.P. O’Boyle, and H.K. Wickramasinghe, Appl. Phys. Lett. 58 2921 (1991).
33. T.B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, S. Bauer, and N.S. Sariciftci, Adv. Mater. 17 2315 (2005).
34. C.R. Newman, C.D. Frisbie, D.A. da Silva, J.L. Bredas, P.C. Ewbank, and K.R. Mann, Chem. Mater. 16 4436 (2004).
35. J. Ouyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45 8443 (2004).
36. M. Lapkowski and A. Proň, Synth. Met. 110 79 (2000).
37. S. Garreau, J.L. Duvail, and G. Louarn, Synth. Met. 125 325 (2002).
38. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
39. A. K. Pandey, K. N. N. Unni, and J. M. Nunzi, Thin Solid Films 511–512, 529 (2006).
40. A. K. Pandey, S. Dabos-Seignon, and J. M. Nunzi, Appl. Phys. Lett. 89, 113506 (2006).
41. S. Karak, S.K. Ray, and A. Dhar, Sol. Energy Mater. Sol. Cells 94, 836 (2010).
42. H.L. Cheng and J.W. Lin, Cryst. Growth Des. 10, 4501 (2010).
43. S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 89, 112108 (2006).
44. S. Karak, V.S. Reddy, S.K. Ray, and A. Dhar, Org. Electron. 10, 1006 (2009).
45. H. Yan, T. Kagata, and H. Okuzaki, Appl. Phys. Lett. 94, 023305 (2009).
46. H.L. Cheng, W.Y. Chou, C.W. Kuo, Y.W. Wang, Y.S. Mai, F.C. Tang, and S.W. Chu, Adv. Funct. Mater. 18, 285 (2008).
47. W.B. Chen, H.F. Xiang, Z.X. Xu, B.P. Yan, V.A.L. Roy, C.M. Che and P.T. Lai, Appl. Phys. Lett. 91, 191109 (2007).
48. M.M. Mandoc, L.J.A. Koster, and P.W.M. Blom, Appl. Phys. Lett. 90, 133504 (2007).
49. C. Deibel, A. Wagenpfahl, and V. Dyakonov, Phys. Status Solidi (RRL) 2, 175 (2008).
50. H. Müllejans, W. Zaaiman, E.D Dunlop, and H.A Ossenbrink, Metrologia 42, 360 (2005).
51. K.I. Ishibashi, Y. Kimura, and M. Niwano, J. Appl. Phys. 103, 094507 (2008).
52. W.Y. Chou, J. Chang, C.T. Yen, F.C. Tang, H.L. Cheng, M.H. Chang, S.L.C. Hsu, J.S. Chen, and Y.C. Lee, Appl. Phys. Lett. 99, 183108 (2011).
53. A.K. Pandey and J.M. Nunzi, Appl. Phys. Lett. 89, 213506 (2006).
54. D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, and P. Heremans, Sol. Energy Mater. Sol. Cells 91, 399 (2007).
55. H. Yoshida, K. Inaba, and N. Sato, Appl. Phys. Lett. 90, 181930 (2007).
56. D. Nabok, P. Puschnig, C. Ambrosch-Draxl, O. Werzer, R. Resel, and D.-M. Smilgies, Phys. Rev. B. 76, 235322 (2007).
57. J.Y. Kim and A.J. Bard, Chem. Phys. Lett. 383, 11 (2004).
58. J. Jang, S. Nam, D.S. Chung, S.H. Kim, W.M. Yun, and C.E. Park, Adv. Funct. Mater. 20, 2611 (2010).
59. V.K. Pecharsky and P.Y. Zavalij, Springer: New York, 2005, Chapter 2.
60. S. Karak, S.K. Ray, and A. Dhar, Sol. Energy Mater. Sol. Cells 94, 836 (2010).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-06-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw