進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2604201909360800
論文名稱(中文) 三維綠島尾流數值模擬之研究
論文名稱(英文) A Three-dimensional Numerical Study of the Green Island Wake
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 侯典轟
研究生(英文) Tien-Hung Hou
學號 N88021090
學位類別 博士
語文別 中文
論文頁數 138頁
口試委員 指導教授-蕭士俊
口試委員-許泰文
口試委員-翁文凱
口試委員-梁興杰
口試委員-蔡加正
口試委員-曾以帆
中文關鍵字 普林斯頓海洋模式  綠島尾流  垂直結構  雷諾數  風應力  潮汐  蘭嶼尾流 
英文關鍵字 Princeton Ocean Modelling  Green Island wake  Vertical structure  Reynolds number  Wind stress  Tide  Lanyu wake 
學科別分類
中文摘要 本文以三維的普林斯頓海洋模式(Princeton Ocean Modelling, POM)來模擬綠島尾流。為模擬綠島尾流之特徵,其數值模式考慮了海洋的鹽度、溫度、水位高程、水深地形以及風應力等效應,並使用HYCOM的數值結果作為POM模式的初始條件與邊界條件。然而,數值結果也與船載式都卜勒流剖儀(Shipboard Acoustic Doppler Current Profiler, SADCP)和衛星影像分析數據來驗證POM模式之可行性與可預測性。此外,本文研究分別以模擬不同的雷諾數、風應力、潮汐等效應以及蘭嶼尾流交互作用之案例來探討綠島尾流的特徵,並在不同測試案例中,以雷諾數、渦漩空間比、司特勞克數與渦流行進速度來探討渦流之特徵。然而,在比較不同的雷諾數條件下,較高的雷諾數具有較低的渦漩洩離週期(Vortex shedding period, VSP)使得 的值增加;另一方面,在相同的雷諾數條件下,水深越深具有較高的VSP但 的值則降低。然而,當雷諾數為100時,推算出的 近似於0.23;雷諾數為200時, 約0.24,以及擬真的模擬條件下, 近似於0.23,這些結果與Chang et al. (2013)現場量測結果趨近一致。在風應力的模擬中顯示,綠島下游處的流速,當風向為西南風時會較風向為東北風來得大。西南風加速了表面流的速度,強化了原本的尾渦流機制;東北風則尾渦流受風向影響而向西偏移,但渦漩洩離現象仍顯著,於風應力效應的模擬結果可發現綠島尾渦流明顯受到風場影響。在潮汐的案例模擬中,由於臺灣東南方潮流流速不大,因此,影響綠島尾流不顯著,假若黑潮流速較弱時,可以推測潮流影響綠島尾流比例自然會偏高。蘭嶼尾流及綠島尾流主要是隨著黑潮主軸的擺動而誘發,也可能加強了渦、流間的交互作用,這也間接地影響綠島尾流垂直特徵之變化。
英文摘要 Vortex shedding downstream of Green Island, due to passing of the Kuroshio was numerically studied using the three-dimensional Princeton Ocean Model. Temporal and spatial characteristics of the vortex street were analyzed at different Reynolds numbers, tidal levels, wind directions, and typhoon wave. The model results were compared with in-situ measurements of the shipboard survey and MODIS (Moderate Resolution Imaging Spectroradiometer) satellite image datasets for vortex shedding. Numerical results suggest that the vortex spatial ratio (aspect ratio and dimensionless width), temporal scales (Strouhal number) and propagation speed of the vortices can stretch, twist, and interact in different water depths. However, we found that the higher Reynolds numbers corresponded to lower vortex shedding periods (VSP). Higher water depth corresponded to higher VSPs. The value of 0.23 with the realistic model. These results roughly agree with , an observation obtained by (Chang et al., 2013). On the other hand, Wind stress also affects the velocity of oceanic current. The current velocity is higher under the southwest wind than under the northeast one. The southwest wind tends to increase current velocity and thereby strengthens vortex shedding. The Lanyu wake and the Green Island wake are induced by the main Kuroshio pathway and its swings. By wake tracking, it was possible to describe the interaction between eddies and ocean currents. Then, it also indirectly affects the vertical characteristics of the green island wake.
論文目次 摘要 I
ABSTRACT II
誌謝 VIII
目錄 IX
表目錄 XIII
圖目錄 XIV
符號說明 XVIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 9
1.3 論文架構 14
第二章 模式理論基礎 15
2.1 三維斜壓控制方程 17
2.2 紊流閉合模式(TURBULENCE CLOSURE MODEL) 19
2.2.1 水平擴散係數(SMAGORINSKY DIFFUSIVITY) 20
2.3 二維垂直積分控制方程 21
2.4 SIGMA座標轉換 23
2.5 邊界條件 26
第三章 數值方法 28
3.1 內、外模組切割(MODE SPLITTING)技巧 28
3.2 網格配置 29
3.3 CFL穩定條件 30
3.4 數值離散與模式計算流程圖 32
第四章 模式驗證 33
4.1 資料蒐集 33
4.1.1 全球混合座標海洋模式(1/12° Global HYbrid Coordinate Ocean Circulation Model, HYCOM) 35
4.1.2 美國奧瑞岡州立大學全球潮汐模式(The OSU TOPEX/Poseidon Global Inverse Solution TPXO, TPXO) 36
4.1.3 天氣研究和預報模式(Weather Research and Forecasting, WRF) 37
4.2 臺灣周邊海域之模擬與驗證 38
4.2.1 模式設定 38
4.2.2 模式驗證 39
4.2.2.1 潮位站與潮汐橢圓比對 40
4.2.2.2 表面水流、表面溫度與表面鹽度比對 42
第五章 實例研究 46
5.1 情境模擬 48
5.1.1 雷諾數影響 51
5.1.2 季節風影響 75
5.1.3 潮汐影響 80
5.1.4 颱風影響 92
5.1.4 蘭嶼尾流與綠島尾流交互作用 99
5.1.4.1 模式參數與邊界條件 100
5.1.4.2 模式模擬結果 101
5.2 實例模擬 106
5.2.1 模式參數與邊界條件 106
5.2.2 模式模擬結果 108
第六章 結論與討論 119
6.1 結論與討論 119
6.2 建議 122
參考文獻 123
附錄 132
A. POM模式開放邊界條件參考表格 (MELLOR, 1998) 132
B. 近五年學術著作 136

參考文獻 Amante, C., Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis: US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division Colorado.
Araújo, I. B., Caldeira, R., Couvelard, X. (2010). Island Induced (Sub) Mesoscale Features Around Madeira Archipelago (Initial Findings). Paper presented at the Proceedings of the 3rd International workshop “SeaSAR 2010”.
Arakawa, A., Lamb, V. R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. General circulation models of the atmosphere, 17, 173-265.
Baines, P., Davies, P. (1980). Laboratory studies of topographic effects in rotating and/or stratified fluids. In WMO Orographic Effects in Planetary Flows.
Bleck, R., Smith, L. T. (1990). A wind‐driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. Journal of Geophysical Research: Oceans, 95(C3), 3273-3285.
Blumberg, A. F., Mellor, G. L. (1980). A coastal ocean numerical model. In Mathematical modelling of estuarine physics (pp. 203-219): Springer.
Chang, M. H., Jheng, S. Y., Lien, R. C. (2016). Trains of large Kelvin‐Helmholtz billows observed in the Kuroshio above a seamount. Geophysical Research Letters, 43(16), 8654-8661.
Chang, M. H., Tang, T. Y., Ho, C. R., Chao, S. Y. (2013). Kuroshio‐induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research: Oceans, 118(3), 1508-1519.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., Bleck, R. (2007). The HYCOM (hybrid coordinate ocean model) data assimilative system. Journal of Marine Systems, 65(1), 60-83.
Chen, F. (2013). The Kuroshio power plant: Springer, London.
Cheng, B., Roll, J., Liu, Y., Troolin, D. R., Deng, X. (2014). Three-dimensional vortex wake structure of flapping wings in hovering flight. Journal of The Royal Society Interface, 11(91), 20130984.
Chuang, W.-S., Li, H.-W., Tang, T., Wu, C.-K. (1993). Observations of the countercurrent on the inshore side of the Kuroshio northeast of Taiwan. Journal of oceanography, 49(5), 581-592.
Chung, Y., Kim, H. (2008). Mountain‐generated vortex streets over the Korea South Sea. International Journal of Remote Sensing, 29(3), 867-877.
Coelho, P., Pinho, F. (2003). Vortex shedding in cylinder flow of shear-thinning fluids: II. Flow characteristics. Journal of non-newtonian fluid mechanics, 110(2-3), 177-193.
Coutis, P., Middleton, J. (2002). The physical and biological impact of a small island wake in the deep ocean. Deep Sea Research Part I: Oceanographic Research Papers, 49(8), 1341-1361.
Dong, C., McWilliams, J. C. (2007). A numerical study of island wakes in the Southern California Bight. Continental Shelf Research, 27(9), 1233-1248.
Doong, D.-J., Liu, P. C., Tsai, C.-H., Tsai, J.-C. (2015). Classification and Possible Causes of the Freaque Waves Occurred in Taiwanese Coastal Ocean. Paper presented at the EGU General Assembly Conference Abstracts.
Egbert, G. D., Bennett, A. F., Foreman, M. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12), 24821-24852.
Egbert, G. D., Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183-204.
Galperin, B., Kantha, L., Hassid, S., Rosati, A. (1988). A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the Atmospheric Sciences, 45(1), 55-62.
Grubišić, V., Sachsperger, J., Caldeira, R. M. (2015). Atmospheric wake of Madeira: First aerial observations and numerical simulations. Journal of the Atmospheric Sciences, 72(12), 4755-4776.
Guo, J., Suaznabar, O., Shan, H., Shen, J. (2012). Pier scour in clear-water conditions with non-uniform bed materials. Retrieved from
Halliwell, G., Bleck, R., Chassignet, E., Smith, L. (2000). Mixed layer model validation in Atlantic ocean simulations using the Hybrid Coordinate Ocean Model (HYCOM). EOS, 80, OS304.
Hou, T.-H., Hsiao, S.-C., Tsai, C.-C., Hsu, T.-W. (2018). Numerical Experiments of Green Island Wakes by Topographic Effect and Wind Stress. [Numerical Experiments of Green Island Wakes by Topographic Effect and Wind Stress]. Journal of Coastal and Ocean Engineering (in Chinese), 18(3), 191-203.
Hsiao, S.-C., Hou, T.-H., Hsu, T.-W., Tsai, C.-C. (2019). Using multiple-resolution data in an adaptive simulation for typhoon-induced waves in northwest Pacific Ocean. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 1475090219826756.
Hsu, P.-C., Chang, M.-H., Lin, C.-C., Huang, S.-J., Ho, C.-R. (2017). Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery. Remote sensing of environment, 193, 54-64.
Hsu, P.-C., Lin, C.-C., Huang, S.-J., Ho, C.-R. (2016). Effects of cold eddy on kuroshio meander and its surface properties, east of Taiwan. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9(11), 5055-5063.
Hsu, S.-C., Lin, F.-J., Jeng, W.-L., Tang, T. Y. (1998). The effect of a cyclonic eddy on the distribution of lithogenic particles in the southern East China Sea. Journal of Marine Research, 56(4), 813-832.
Hsu, T.-W., Chou, M.-H., Hou, T.-H., Liang, S.-J. (2015). Typhoon effect on Kuroshio and Green Island wake: a modelling study. Ocean Science Discussions, 12, 3199-3233.
Hsu, T.-W., Doong, D.-J., Hsieh, K.-J., Liang, S.-J. (2015). Numerical Study of Monsoon Effect on Green Island Wake. Journal of Coastal Research, 31(5), 1141-1150.
Hsu, T.-W., Liau, J.-M., Liang, S.-J., Tzang, S.-Y., Doong, D.-J. (2015). Assessment of Kuroshio current power test site of Green Island, Taiwan. Renewable Energy, 81, 853-863.
Hu, C.-K., Chiu, C.-T., Chen, S.-H., Kuo, J.-Y., Jan, S., Tseng, Y.-H. (2010). Numerical Simulation of Barotropic Tides around Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 21(1).
Huang, S.-J., Ho, C.-R., Lin, S.-L., Liang, S.-J. (2014). Spatial-temporal scales of Green Island wake due to passing of the Kuroshio current. International Journal of Remote Sensing, 35(11-12), 4484-4495.
Jiménez, B., Sangra, P., Mason, E. (2008). A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands. Ocean Modelling, 22(3-4), 146-157.
Jordi, A., Wang, D.-P. (2012). sbPOM: A parallel implementation of Princenton Ocean Model. Environmental Modelling & Software, 38, 59-61.
Kuo, W.-Y., Tseng, R.-S. (2012). Effects of bottom topography and flows on oceanic turbulent mixing. (Master Thesis), National Sun Yat-sen University, Master Thesis,
Large, W., Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3), 324-336.
Liang, S.-J., Lin, S.-L., Chang, L.-T. (2013). Numerical simulations of island wakes downstream Green Island, Taiwan due to passing of Kuroshio. Paper presented at the Oceans-San Diego, 2013.
Lin, T.-C., Tang, T.-Y. (2014). The variations of current on Green Island Ridge in the southeast of Taiwan. (Master), National Taiwan University, Master Thesis,
Liu, C.-L., Chang, M.-H. (2017). Numerical studies of small island wakes in the Kuroshio. (Master), National Taiwan University, Master Thesis,
Liu, C.-S., Liu, S.-Y., Lallemand, S. E., Lundberg, N., Reed, D. L. (1998). Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 9(4), 705-738.
Liu, C. L., Chang, M. H. (2018). Numerical Studies of Submesoscale Island Wakes in the Kuroshio. Journal of Geophysical Research: Oceans, 123(8), 5669-5687.
Lu, Y.-C., Hsu, T.-W. (2014). Study on Kuroshio Current Affected by Different Typhoon Tracks. (Master), National Cheng Kung University, Master Thesis,
Madala, R. V., Piacseki, S. A. (1977). A semi-implicit numerical model for baroclinic oceans. Journal of computational physics, 23(2), 167-178.
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., . . . Crew, A. S. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211.
Marble, E., Morton, C., Yarusevych, S. (2019). Spanwise wake development of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories. Experiments in Fluids, 60(5), 81.
Matsuoka, D., Araki, F., Inoue, Y., Sasaki, H. (2016). A new approach to ocean eddy detection, tracking, and event visualization–application to the northwest pacific ocean. Procedia Computer Science, 80, 1601-1611.
Mellor, G. L. (1998). Users guide for a three dimensional, primitive equation, numerical ocean model: Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ 08544-0710.
Mellor, G. L., Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851-875.
National Ocean Service. Currents. Retrieved from https://oceanservice.noaa.gov/education/tutorial_currents/welcome.html
NEP-II. National Energy Program Phase II, NEP-II. Retrieved from http://www.nepii.tw
Ocean data Bank, I. (2011). Ocean Data Bank of the Ministry of Science and Technology. Retrieved from: http://www.odb.ntu.edu.tw
Oey, L.-Y., Mellor, G. L., Hires, R. I. (1985). A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulations. Journal of Physical Oceanography, 15(12), 1676-1692.
Oey, L.-Y., Mellor, G. L., Hires, R. I. (1985). A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observation. Journal of Physical Oceanography, 15(12), 1693-1709.
Oey, L., Chang, Y.-L., Lin, Y.-C., Chang, M.-C., Xu, F., Lu, H.-F. (2013). ATOP-The Advanced Taiwan Ocean Prediction System Based on the mpiPOM. Part 1: Model Descriptions, Analyses and Results. Terrestrial, Atmospheric & Oceanic Sciences, 24(1).
Ou, S.-H., Liau, J.-M., Hsu, T.-W., Shin, C.-Y., Juang, W.-J. (2008). Introducing and Installing the ocean circulation model: POM for seas around Taiwan: Harbor and Marine Technology Center, Institute of Transportation, Ministry of Transportation and Communications.
Phillips, N. A. (1957). A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 14(2), 184-185.
Pullen, J., Caldeira, R., Doyle, J. D., May, P., Tomé, R. (2017). Modeling the air‐sea feedback system of Madeira Island. Journal of Advances in Modeling Earth Systems, 9(3), 1641-1664.
Purser, R., Leslie, L. (1988). A semi-implicit, semi-lagrangian finite-difference scheme using hligh-order spatial differencing on a nonstaggered grid. Monthly weather review, 116(10), 2069-2080.
Rossby, C.-G., Montgomery, R. B. (1935). The layer of frictional influence in wind and ocean currents: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.
Shen, H.-C., Wang, Y.-H. (2012). Topography induced flow variations between Taitung-Lutao off Southeast Taiwan. (Master Thesis), National Sun Yat-sen University, Master Thesis,
Simons, T. J. (1974). Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. Journal of Physical Oceanography, 4(4), 507-523.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., . . . Powers, J. G. (2008). A description of the advanced research WRF version 3. Retrieved from
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., Powers, J. G. (2005). A description of the advanced research WRF version 2. Retrieved from
Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164.
Smagorinsky, J., Manabe, S., Holloway, J. L. (1965). Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev, 93(12), 727-768.
Tang, T., Yang, Y. (1993). Low frequency current variability on the shelf break northeast of Taiwan. Journal of oceanography, 49(2), 193-210.
Trenberth, K. E. (1990). Recent observed interdecadal climate changes in the Northern Hemisphere. Bulletin of the American Meteorological Society, 71(7), 988-993.
Tsai, C.-C., Hou, T.-H., Popinet, S., Chao, Y. Y. (2013). Prediction of waves generated by tropical cyclones with a quadtree-adaptive model. Coastal Engineering, 77, 108-119.
Tzang, S.-Y., Hsu, T.-W., Chen, J.-H., Chen, I. S. (2013). Establishment of Taiwan Marine Energy Test Site (TAMETS) Retrieved from Ministry of Science and Technology:
von Kármán, T. (1912). Uber den mechanismus des flussigkeits-und luftwiderstandes. Phys. Z., 49-59.
Wang, Y., Jan, S., Wang, D. (2003). Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuarine, Coastal and Shelf Science, 57(1), 193-199.
Whitehouse, R. J., Harris, J. (2014). Scour prediction offshore and soil erosion testing.
Williamson, C., & Brown, G. (1998). A series in 1/√ Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. Journal of Fluids and Structures, 12(8), 1073-1085.
Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., Yang, G. (2015). POM. gpu-v1. 0: a GPU-based Princeton Ocean Model. Geoscientific Model Development, 8(9), 2815-2827.
Yablonsky, R. M., Ginis, I., Thomas, B. (2015). Ocean modeling with flexible initialization for improved coupled tropical cyclone-ocean model prediction. Environmental Modelling & Software, 67, 26-30.
Zheng, Z.-W., Zheng, Q. (2014). Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of Taiwan Island. Continental Shelf Research, 81, 1-6.
李大偉,唐存勇。(1992)。臺灣東北海域陸棚邊緣區半日潮垂直結構之研究。(碩士論文),國立臺灣大學海洋研究所。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw