進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2601201914402700
論文名稱(中文) 移動負載下之三明治壓電複合板振動分析
論文名稱(英文) Vibration Analysis of Sandwich Piezoelectric Plate under Moving Load
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 1
出版年 108
研究生(中文) 廖偉智
研究生(英文) Wei-Zhi Liao
學號 N96041224
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-王榮泰
口試委員-陳蓉珊
口試委員-潘文峰
中文關鍵字 移動負載  三明治壓電複合板  位移與電壓 
英文關鍵字 Moving load  Sandwich Piezoelectric Mindlin Plate  Displacement and Voltage 
學科別分類
中文摘要   本文研究目的為探討一塊壓電三明治Mindlin Plate的動態響應,此三明治板結構的上下層為鋁合金板,中間為壓電材料(PZT-5H)。
  本文經由Mindlin Plate理論,計算出結構的應力、應變,再藉由應力、應變推算出動能及應變能方程式。通過邊界條件以及形狀函數計算出運動方程式,再以Hamilton’s Principle 理論計算出壓電三明治之統馭方程式,應用解析法於求出壓電複合板之模態頻率。
  施加一個集中型移動負載於結構上,獲得其位移與電壓,並探討改變移動負載的速度對於位移與電壓的影響。
英文摘要 The purpose of this paper is to investigate the dynamic response of a piezoelectric sandwich Mindlin Plate. The upper and lower layers of the sandwich plate structure are aluminum alloy plates with piezoelectric material (PZT-5H) in the middle.
The stresses and strains of the structure in this paper are calculated via the Mindlin plate theory. The kinetic energy and strain energy are derived by stress and strain. The governing equations of the piezoelectric sandwich plate are derived by Performing Hamilton's Principle. The modal frequencies of the piezoelectric composite plate are obtained by analytic method.
Applying a concentrated moving load on the structure obtain the displacement of the plate and the voltage on the piezoelectric layer. The velocity effect on the displacement and voltage is investigated in the thesis.
論文目次 目 錄
摘要……………………………………………………………………………...I
英文摘要………………………………………………………………………..II
誌謝…………………………………………………………………………...VII
目錄………………………………………………………………………….VIII
圖目錄……………………………………………………………………...….XI
表目錄……………………………………………………………………….XIII
第一章 緒論……………………………………………………………………1
1-1 前言……………………………………………………………………1
1-2 文獻回顧………………………………………………………………3
1-3 本文大綱………………………………………………………………6
第二章 研究架構………………………………………………………………7
2-1 研究流程………………………………………………………………7
2-2 基本假設………………………………………………………………7
第三章 壓電複合板之運動方程式……………………………………………8
3-1 研究模型設定…………………………………………………………8
3-2 鋁板位移函數…………………………………………………………9
3-3壓電板位移函數……………………………………………………...10
3-4 鋁板之動能與應變能………………………………………………..14
3-5壓電板之動能與電焓………………………………………………...16
3-6 壓電複合板之運動方程式…………………………………………..17
第四章 壓電複合板之振動分析……………………………………………..19
4-1 邊界條件……………………………………………………………..19
4-2 自由震動……………………………………………………………..20
4-3 強迫振動……………………………………………………………..25
4-4 移動負載作用………………………………………………………..28
第五章 研究數據分析與討論…………………………………………..……29
5-1 材料設定……………………………………………………………..29
5-2 振動分析……………………………………………………………..30
5-2-1 自由震動……………………………………………………....30
5-2-2 強迫振動………………………………………………………31
5-3 位移與時間之關係………………………………………………......31
5-3-1 不同速度下位移與時間之關係……………………………....31
5-3-2 速度與位移之比較……………………………………………38
5-4 電壓與時間之關係…………………………………………………..42
5-4-1 不同速度下電壓與時間之關係………...…………………….42
5-4-2 速度與電壓之比較……………………………………………47
第六章 總結…………………………………………………………….…….51
6-1 結論…………………………………………………………………..51
6-2 未來展望……………………………………………………………..52
參考文獻………………………………………………………………………53
附錄……………………………………………………………………………57
參考文獻 1. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” Journal of Applied Mechanics, Vol. 12, pp. 69-77, 1945.
2. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.
3. R. D. Mindlin, A. Schacknow and H. Deresiewicz, “Flexural vibrations of rectangular plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436, 1955.
4. E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” Journal of Applied Mechanics, Vol. 28, pp. 402-408, 1961.
5. J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” Journal of Applied Mechanics, Vol. 37, pp. 1031-1036, 1970.
6. A. W. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.
7. N. D. Phan and J. N. Reddy, “Analysis of laminated composite plates using a higher‐order shear deformation theory,” International Journal for Numerical Methods in Engineering, Vol. 21, pp. 2201-2219, 1985.
8. N. S. Putcha and J. N. Reddy, “Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory,” Journal of Sound and Vibration, Vol. 104, pp. 285-300, 1986.
9. J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, 1997.
10. L. X. Luccioni and S. B. Dong, “Levy-type finite element analyses of vibration and stability of thin and thick laminated composite rectangular plates,” Composites Part B: Engineering, Vol. 29, pp. 459-475, 1998.
11. J. A. Gbadeyan and S. T. Oni, “Dynamic behaviour of beams and rectangular plates under moving loads,” Journal of Sound and Vibration, Vol. 182, pp. 677-695, 1995.
12. J. S. Wu, M. L. Lee and T. S. Lai, “The dynamic analysis of a flat plate under a moving load by the finite element method,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 743-762, 1987.
13. J. J. Wu, A. R. Whittaker and M. P. Cartmell, “The use of finite element techniques for calculating the dynamic response of structures to moving loads,” Computers & Structures, Vol. 78, pp. 789-799, 2000.
14. C. C. Chao and Y. C. Chern, “Comparison of Natural Frequencies of Laminated by 3-D Theory,” Journal of Sound and Vibration, Vol. 230, No. 5, pp. 985-1007, 2000.
15. M. Aydogdu and T. Timarci, “Vibration Analysis of Cross-Ply Laminated Square Plates with General Boundary Condition,” Composites Science and Technology, Vol. 63, pp.1061-1070, 2003.
16. G. Bradfiled, “Ultrasonic transducers 1. Introduction transducers. Part A.” Ultrasonic, pp.112-113, 1970.
17. R. D. Mindlin, “Forced thickness –shear and flexural vibrations of piezoelectric crystal plates,” Journal of Applied Physics, Vol. 22, pp. 83- 88, 1952.
18. H. F. Tiersten, “Thickness vibrations of piezoelectric plates,” The Journal of the Acoustical Society of America, Vol. 35, pp. 53-58, 1963.
19. P. Lloyd and M. Redwood, “Finite‐difference method for the Investigation of the vibrations of solids and the evaluation of the equivalent‐circuit characteristics of piezoelectric resonators,” The Journal of the Acoustical Society of America, Vol. 39, pp. 346-354, 1966.
20. C. K. Lee and F. C. Moon, “Laminated piezopolymer plates for torsion and bending sensors and actuators,” The Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
21. E. F. Crawley and J. De Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, Vol. 25, pp. 1373-1385, 1987.
22. S. Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
23. Y. K. Kang, H. C. Park, W. Hwang and K. S. Han, “Optimum placement of piezoelectric sensor/actuator for vibration control of laminated
beams,” AIAA Journal, Vol. 34, pp. 1921-1926, 1996.
24. M. W. Lin, A. O. Abatan and C. A. Rogers, “Application of commercial finite element codes for the analysis of induced strain-actuated structures,” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 869- 875, 1994.
25. J. H. Huang and H. I. Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,” Materials Letters, Vol. 46, pp. 70-80, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw