進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2601201612165500
論文名稱(中文) 彈性微穿孔板吸音特性之分析研究
論文名稱(英文) Research on the Properties of Acoustic Absorption for Flexible Micro-perforated Panels
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 104
學期 1
出版年 105
研究生(中文) 黎岳
研究生(英文) Yueh Li
學號 P16034086
學位類別 碩士
語文別 中文
論文頁數 49頁
口試委員 指導教授-涂季平
口試委員-黃清哲
口試委員-劉雲輝
口試委員-江國寧
中文關鍵字 微穿孔板  吸音率  彈性體  聲振耦合  有限元素法 
英文關鍵字 micro-perforated panels  sound absorption coefficient  elastic body  vibro-acoustics coupled  Finite Element Method 
學科別分類
中文摘要 學術界對於微穿孔板吸音器的研究已有非常多成果,在實驗量測部份我們能觀察到系統吸音係數曲線因為彈性板振動的影響,在一些頻率位置會出現驟升峰值或驟降谷值,這在無限剛板的假設中無法預測。本篇論文針對有限尺寸的彈性微穿孔板與其背後空氣層所組成的彈性微穿孔板吸音器有詳細論述。
彈性體的理論模型是利用阻抗類比轉換求解聲振系統,彈性微穿孔板吸音器的總輸入阻抗內含有微穿孔、彈性板及板後空氣層的效應。而測試實驗部分,本文利用阻抗管法中的轉移函數法,進行微穿孔板試片吸音率的量測。
本文透過數值分析方法,使用ANSYS軟體對彈性板做結構分析、在Virtual.Lab Acoustics軟體中建立模擬聲場,以聲壓響應計算彈性板聲阻抗率、系統吸音率。提出一套彈性微穿孔板吸音器吸音係數預測的分析程序,所得結果經實驗驗證。
在彈性體理論模型的預估中,圓板材料參數、結構阻尼、圓板自然頻率與荷姆霍茲共振頻率間相對關係都主導著吸音係數曲線上的局部極值,根據這些結果,未來在微穿孔板的開發階段,設計流程將更有效率。
英文摘要 In this paper, the sound absorption of a finite flexible micro-perforated panel (MPP) backed by an air cavity is studied in details. The absorption coefficient developed for the micro-perforated panel absorber (MPPA) is based on the equivalent electro-acoustical circuit analogy of its equivalent mechanical system. A process utilized to predict the sound absorption using the computer-aided design software products is developed.
Experiments are carried out at normal sound incidence and plane waves. The theoretical results show good agreements with the measurements after making an adjustment for the new-type V-shape panel. It can be concluded that (1)Extra absorption peaks or dips are clearly observed at frequencies which the axisymmetric circular panel modes are excited. (2)The absorption of a flexible MPP can be further enhanced by adjusting its design to bring the structural resonant frequencies higher than the Helmholtz resonant frequency and closer together to widen the effective absorption bandwidth. (3)The method for modifying the stiffness of the circular panel is to adjust the density and the thickness simultaneously to maintain the exact mass of V-shape panel. (4)Numerical simulation analytic process are used to estimate the absorb ability of the MPP before producing in order to save on costs.
論文目次 摘要 I
Extended Abstract II
誌謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
符號說明 XIII
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 2
1.2.1微穿孔板吸音系統 2
1.2.2吸音率量測方法 3
1.3新型微穿孔板結構 4
1.4分析流程及論文架構 4
第二章 微穿孔板吸音器理論分析 6
2.1微穿孔板簡介 6
2.2剛性微穿孔板吸音器分析模型 6
2.2.1馬大猷分析模型 8
2.2.2荷姆霍茲共振頻率 10
2.3彈性微穿孔板吸音器理論模型 13
2.4山谷開槽型微穿孔板試件 15
第三章 吸音係數量測流程 16
3.1吸音係數簡介 16
3.2吸音係數量測方法 18
3.2.1聲學阻抗管簡介 19
3.2.2轉移函數理論及應用 19
3.2.3實驗設置 22
第四章 微穿孔板吸音器之吸音率數值分析 25
4.1微穿孔效應 26
4.2彈性板效應 26
4.2.1模型建立及網格劃分 28
4.2.2邊界條件設定及模態分析 30
4.2.3聲學響應分析 31
4.3系統總體效應 34
第五章 結果分析、比較與探討 36
5.1彈性體的影響 37
5.2板材阻尼的影響 38
5.3新型微穿孔板結構的影響 41
5.4圓板自然頻率與荷姆霍茲共振頻率之間相關性的影響 43
第六章 結論與未來展望 44
6.1結論 44
6.2未來展望 46
參考文獻 47
參考文獻 [1] 杜功煥,朱哲民,龔秀芬 (2001)。聲學基礎(第2版)。南京:南京大學出版社。
[2] 馬大猷 (1975)。微穿孔吸聲結構的理論和設計。中國科學,第一期,38-50。
[3] 馬大猷,沈㠙 (2004)。聲學手冊(修訂版)。北京:科學出版社。
[4] 葉子平 (2015)。新型微穿孔吸音板之理論及實驗研究。國立成功大學系統及船舶機電工程學系碩士論文,未出版,台南。
[5] 蔡哲玄 (2009)。薄微穿孔板吸音機制之物裡洞察。國立台灣大學工程科學及海洋工程學研究所碩士論文,未出版,台北。
[6] 標準檢驗局,CNS 9056(A3165),餘響室法吸音率測定法,1986。
[7] 標準檢驗局,CNS 13208,管內法建築材垂直入射吸音率測定法,1993。
[8] ASTM C423-90a, Standard test method for sound absorption and sound absorption coefficient by the reverberation room method.
[9] ASTM E1050-98, Standard test method for impedance and absorption of Acoustical materials using a tube, two microphones, and a digital frequency analysis system.
[10] Azma Putra (2008). Dissertation Sound Radiation from Perforated Plates. Unpublished doctoral dissertation, University of Southampton, Southampton.
[11] C. Zwikker and C. W. Kosten (1949). Sound absorbing materials. Elsevier, New York.
[12] Crandall, J. B. (1926). Theory of vibrating system and sound. Van Nostrand, New York, Appendix A.
[13] Cédric Maury, Teresa Bravo and Cédric Pinhède (2012). Coupled mode analysis of thin micro-perforated panel absorbers. ACOUSTICS 2012, Hong Kong.
[14] Heidi Ruiz Villamil (2012). Dissertation Acoustic Properties of Microperforated Panels and Their Optimization by Simulated Annealing. Unpublished doctoral dissertation, Universidad Politécnica de Madrid, Madrid.
[15] ISO 10534-1, Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part1: Using standing wave ratio, 1996.
[16] ISO 10534-2, Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part2: Transfer-function method, 1998.
[17] ISO 354, Acoustic measurement of sound absorption in a reverberation room, 2003.
[18] J. Kang and H. V. Fuchs (1999). Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space. J. Sound Vib. 220, 905-920.
[19] Kimihiro Sakagami, Masayuki Morimoto and Motoki Yairi (2007). Recent Developments in Application of Microperforated Panel Absorbers. 14th International Congress on Sound & Vibration, Crains.
[20] K. Sakagami, M. Morimoto, M. Yairi (2009). A note on the relationship between the sound absorption by micro-perforated panels and panel/membrane-type absorbers. Appl. Acoust. 70, 1131–1136.
[21] L. Jaouen and F. X. Bécot (2011). Acoustical characterization of perforated facings. J. Acoust. Soc. Am. 129(3), 1400-1406.
[22] M. Toyoda, R. L. Mu and D. Takahashi (2010). Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers. Appl. Acoust. 71, 315–32.
[23] N. Atalla and F. Sgard (2007). Modeling of perforated plates and screens using rigid frame porous models. J. Sound Vib. 303, 195-208.
[24] T. Dupont, G. Pavic and B. Laulagnet (2003). Acoustic properties of lightweight microperforated plate systems. Acta Acustica united with acustica 89, 201-212.
[25] Y. Y. Lee, E. W. M. Lee and C. F. Ng (2005). Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 287, 227–243.

[26] Y. Y. Lee, E. W. M. Lee (2007). Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustic resonances. Int. J. Mech. Sci. 49, 925–934.
[27] Z. Tao, B. Zhang, D. W. Herrin and A. F. Seyber (2005). Prediction of Sound-Absorbing Performance of Micro-Perforated Panels using the Transfer Matrix Method. University of Kentucky.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-02-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw