進階搜尋


 
系統識別號 U0026-2601201409594500
論文名稱(中文) 吸附性建材應用於室內空間數值模擬手法之開發
論文名稱(英文) The Development of Numerical Simulation for Adsorptive Building Material Applied on Indoor Environment
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 103
學期 1
出版年 103
研究生(中文) 詹博喻
研究生(英文) Bo-Yu Jan
電子信箱 boyujan@gmail.com
學號 N76001377
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 指導教授-蔡耀賢
口試委員-李俊璋
口試委員-陳振誠
中文關鍵字 室內空氣品質  吸附性建材  數值模擬  長期吸附性能 
英文關鍵字 Indoor Air Quality  Adsorptive Building Material  Numerical Simulation  Long-Term Adsorption Performance 
學科別分類
中文摘要 各國研究顯示,現代人有80%以上的時間處在室內,所以室內空氣品質的好壞,對人體的健康有直接的影響。現代因為工業發達,室內有許多工業製品有可能會逸散出揮發性有機化合物,這些揮發性有機化合物有可能會對人體健康造成危害,像是2004年國際癌症研究中心(International Agency for Research on Cancer,I.A.R.C.)就將甲醛列入Group1的致癌物質當中,證實甲醛的致癌性具有充分證據,所以有效排除這些揮發性有機化合物是室內空氣品質的重要課題。除了使用低逸散健康綠建材來進行逸散源的源頭管制、確保適當的換氣率之外,近年來採用吸附建材來吸附揮發性有機化合物的手法,也逐漸被重視。有研究表明,在住宅空間中使用低逸散建材的情況下,室內空氣中揮發性有機化合物的濃度還是有可能會超過臺灣室內空氣品質標準所規定的濃度,尤其是在空調開啟時,為了降低空調耗能而將門窗關閉,此時會有換氣率不足的問題,雖然室內揮發性有機化合物的濃度上升速度比較慢,但因為室內空氣中的揮發性有機化合物無法有效排除,在濃度累積一段時間後還是會超標,此時需要其他降低室內揮發性有機化合物濃度的方法,而吸附性建材就是方法之一,且不需消耗額外的能源就能運作。
目前國內外對於吸附建材的研究,大多是在恆定狀態下進行,其實驗過程之環境因子如溫度、濕度、濃度和換氣率等都是恆定的,但是實際情況下,室內這些環境因子都會不斷變動,且這些研究大多是探討短期的效益。所以本研究透過數值模擬的方式,探討變動的室內環境因子之吸附建材的長期效益。
本研究之目的主要有五點。第一點是確立吸附建材中熱傳與質傳之數值模型,包含熱與物質移動的暫態現象,以完整評估建材之吸附與脫附的現象。第二點是開發吸附建材暫態數值解析之模擬程式,並以臺灣本土化氣候與使用模式進行解析,以評估吸附性建材在臺灣室內空間中的長期性能。第三點是以數值模擬手法進行吸附建材使用之探討,並提出使用吸附性建材的最佳設計手法。第四點是評估吸附性建材的各種使用模式對室內人員長期健康之影響,並提出可提升室內人員健康之設計手法。第五點是探討變動環境條件下對吸附建材效益的長期影響。
目前國內外對於建材吸附揮發性有機化合物的研究,尚未能有涵蓋吸附與脫附現象並以空間尺度(Room Level)進行長期模擬的數值模擬手法,且市面上尚未有針對吸附建材的模擬軟體,所以本研究以Fortran語法撰寫針對建材吸附單一種揮發性有機化合物氣體之模擬程式,以建材內熱與物質同時移動為基礎建立數值模型。數值模型建立完成後,本研究透過實驗與文獻取得相關參數導入程式中;建材相關參數以水銀壓入法實驗取得孔隙性質、試樣管法實驗取得吸附等溫線、其他基本參數透過廠商取得;室內環境條件之參數以本土之文獻為依據,再導入室內熱傳與質傳方程式中。以上材料與室內環境之數值模型與參數完成設定後,就可進行建材對揮發性有機化合物吸附與脫附之模擬,並可延伸探討吸附性建材長期性能與健康風險評估。
本研究以住宅空間使用吸附建材的情況進行長期模擬,其模擬結果可歸納為以下幾點結論:
(1)在本研究所設定的各種不同的模擬情況,使用吸附建材都能夠有效降低使用時段的甲醛濃度,而吸附建材設置面積越大,其降低使用時段的室內甲醛濃度的能力越高。
(2)不管是由短期的健康效益或是長期的終身致癌風險都顯示,吸附建材確實能夠降低甲醛造成的健康風險。
(3)使用吸附建材會使室內甲醛濃度的變化幅度減小,其濃度區間的比率分佈大約會集中在降低後的平均濃度附近;吸附建材設置面積越大或是逸散源的逸散速率越低,則集中的現象越明顯。
(4)在住宅室內發生甲醛相對高峰值濃度時,吸附建材就能將此情況的甲醛高峰值濃度降低,讓上升幅度不會這麼劇烈。
(5)吸附建材在本研究設定的高、中(一般)、低逸散情況下都能有效降低健康風險,且脫附時的脫附速率大部分情況都符合臺灣低逸散健康綠建材的標準。不過本研究設定的高逸散情況原本在無設置吸附建材的情況下,其室內平均甲醛濃度就已經過高,設置吸附建材後雖然濃度降低許多,但濃度還是相當高,所以控制污染源還是很重要。
(6)吸附建材的吸脫附與逸散源的逸散速率有很大的關係,逸散建材在後期因為已經逸散ㄧ段時間,其逸散速率的變化幅度較為平緩與穩定,吸附建材的吸脫附也有較穩定的趨勢。當後期逸散建材之逸散速率較穩定後,吸附建材的吸脫附通量會呈現較為平穩的吸脫附狀態,達到週期性的吸脫附。
英文摘要 Scores of studies suggest that contemporary human beings spend over 80% of their time indoors. Thus, indoor air quality has a heavy impact on personal health. Lots of industrial products emit full range of volatile organic compounds that are harmful to personal health. Reports by the International Agency for Research on Cancer (I.A.R.C.) in 2004 placed formaldehyde in the Group1of carcinogen. It is, therefore, essential to remove these volatile organic compounds in maintaining good quality indoor air. In addition to controlling the source of volatile organic compounds and ensuring proper air exchange rate by adopting low emission and green building materials, the adoption of adsorptive building materials for volatile organic compounds elimination is getting popular recently. Yet, some researchers have found that even in case of low emission materials, the concentration of volatile organic compounds contained in indoor air may go over the upper limit set by the indoor air quality specifications valid in Taiwan. This is especially the case when air conditioning is used as windows and doors would be closed to reduce power consumption. In addition to poor air exchange, the concentration of volatile organic compounds would still rise above acceptable levels, although at a slower pace, for lack of effective measures to remove them. Additional approaches would thus be required here. One of them is the adoption of adsorptive building materials which work even without the need for extra power consumption.
Most researches on adsorptive building materials now in Taiwan are subject to stable conditions, including temperature, humidity, concentration and air exchange rate, for short term benefits. This is not the case in almost every real environment. This study explores the long term benefits of adsorptive building materials in an indoor environment with changing factors by numerical simulation.
There are five goals of this study. The first is to set up the numerical model of heat and mass transfer of adsorptive building materials, including the transient state of heat and mass movement, to fully evaluate the adsorption and desorption of building materials. The second is to develop a simulation program of the adsorptive building materials' transient numeric analysis on the basis of local weather and use model to find out the long term performance of adsorptive building materials in indoor space in Taiwan. The third is to explore the use of adsorptive building materials with numeric simulation and propose an optimum design method with the adoption of adsorptive building materials. The fourth is to evaluate the long term impact on people in indoor environment under different case uses of adsorptive building materials and come up with design methods that may improve personal health. The fifth is to explore the long term impact of the benefits of adsorptive building materials in changing environment conditions.
There is no local or overseas studies on the adsorption of building materials' volatile organic compounds that cover both adsorption and desorption effects with room level numeric simulation with a long time span. There is no simulation software available in the market that addresses the issue of adsorptive building materials either. This study creates a concurrent heat and mass transfer in building materials based simulation program addressing the adsorption of a single volatile organic compound by building materials in the FORTRAN language. The following parameters acquired from experiments and documents are then fed into the model: The parameters of pore nature are obtained by experiments using the mercury penetration method; the adsorption isotherm by sample tube method, other basic parameters provided by materials suppliers; indoor environment conditions from domestic documents. After these material and indoor environmental numeric model and parameters are set up, the series simulation of volatile organic compounds adsorption by and desorption from building materials are made and estimates of long term performance and health risks of adsorptive building material are derived.
Long term simulations on the use of adsorptive building material in household space are made by this study. Conclusion from the simulation results are:
(1)In every simulation scenario set by this study the use of adsorptive building materials reduces the concentration of formaldehyde effectively. The area of the adsorptive building material is proportional to its capacity in lowering the concentration of formaldehyde.
(2)An adsorptive building material does reduce health risks caused by formaldehyde in terms of short term health benefits and life long cancer risks.
(3)Changes in the magnitude of indoor formaldehyde levels fall with the use of adsorptive building materials. The distribution of concentration ratios centers on the reduced average concentration level. It centralizes more significantly when the area of the adsorptive building material is getting larger and when the emission rate of the emission source is getting slower.
(4)The adsorptive building materials levels off the relative peak concentration value of indoor formaldehyde, that is, the rising speed is getting slower.
(5)In each of the high, low and medium emission rate set in this study, the adsorptive building materials reduce health risks effectively with the desorption speed compliant with the low emission green building material standards valid in Taiwan. However, the high emission scenario set by this study bears average indoor formaldehyde concentration at relatively high level although it drops after the installation of adsorptive building materials, it remains very high. This means that controlling the source of pollution remains critical.
(6)The adsorption and desorption of adsorptive building materials and the emission rate of the emission sources are highly related to each other. In a later stage, changes in emission rates level off and become stable which, in turn, can lead to more stable adsorption and desorption of adsorptive building materials, that is, a regular adsorption and desorption cycle could be observed.
論文目次 摘要 I
誌謝 XI
目錄 XIII
圖目錄 XV
表目錄 XIX
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究範圍 3
1-4 研究流程 4
1-5 研究方法 5
第二章 文獻回顧及基礎理論 7
2-1 揮發性有機化合物 7
2-2 臺灣室內空氣品質現況 9
2-3 吸附性建材相關文獻 11
2-4 固-氣界面之吸附理論 18
2-5 氣體在多孔質材料中質傳的相關理論 24
第三章 數值模擬手法 29
3-1 概述 29
3-2 多孔介質材料之熱傳與VOCs質傳數值模型 31
3-3 邊界條件與室內熱傳與質傳方程式 37
第四章 以實驗求取模擬所需之參數 43
4-1 水銀壓入法實驗 43
4-2 小尺寸環控箱法實驗 47
4-3 試樣管法破出實驗 49
第五章 數值模擬條件與結果 57
5-1 數值模擬手法的驗證 57
5-2 室內空間數值模擬條件設定與吸附建材效益的評價指標 60
5-3 模擬各案例之條件設定 75
5-4 Case1模擬結果分析 82
5-5 Case2模擬結果分析 85
5-6 Case3模擬結果分析 90
5-7 當量通風率 95
5-8 Case4模擬結果分析 97
5-9 Case5模擬結果分析 100
第六章 結論與後續建議 111
6-1 結論 111
6-2 後續建議 113
參考文獻 115
參考文獻 [1]徐怡雯. 本土化時間活動模式之建置與應用研究 碩士 論文, 國立高雄第一科技大學, (2007).
[2]United States Environmental Protection Agency. Indoor Air Facts No.4-Sick Building Syndrome. (1991).
[3]L. Mølhave. The sick buildings and other buildings with indoor climate problems. Environment International 15, 65-74, doi:http://dx.doi.org/10.1016/0160-4120(89)90011-1 (1989).
[4]吳曄真. 台灣地區住宅系統板材裝修量對室內空氣品質影響之研究-以台南市施作案為例 碩士 論文, 國立成功大學, (2008).
[5]Radian Corporation. Control Techniques for Volatile Organic Emissions from Stationary Sources. United States Environmental Protection Agency EPA-45/2-78-022 (1978).
[6]World Health Organization. Indoor air quality:organic pollutants. (Berlin(West), 1987).
[7]United States National Research Council. Indoor Pollutants. (The National Academies Press, 1981).
[8]陳震宇. 室內木質建材甲醛逸散之研究 碩士 論文, 國立臺灣大學, (2001).
[9]陳振誠. 台灣本土氣候下換氣率影響建材有機物質逸散特性之研究-以合板及清漆為例 碩士 論文, 國立成功大學, (2004).
[10]林君穎. 環境因子對室內建材VOCs及Formaldehyde逸散率之影響研究 碩士 論文, 國立成功大學, (2004).
[11]秦偉庭. 室內揮發性有機物質逸散衰減模式對櫥櫃類家具適用性及健康風險評估之研究 碩士 論文, 國立台北科技大學, (2009).
[12]M. Krzyzanowski, J. J. Quackenboss & M. D. Lebowitz. Chronic respiratory effects of indoor formaldehyde exposure. Environ Res 52, 117-125 (1990).
[13]United States National Library of Medicine. TOXNET:Toxicology Data Network.
[14]中華民國行政院環境保護署. 室內空氣品質標準. (2012).
[15]李慧梅. 商業區及住家室內空氣品質調查評估. Report No. NSC87-EPA-P-002-014, (1998).
[16]蘇慧貞, 李俊璋 & 江哲銘. 室內/室外空氣污染物之國民健康風險評估及管制成本效益分析. Report No. EPA-91-FA11-03-A218, (2003).
[17]Carsten Rode et al. Moisture buffering of building materials. Report No. 8778771951, (Department of Civil Engineering, Technical University of Denmark, 2005).
[18]Y. An, J. S. Zhang & C. Y. Shaw. Measurements of VOC Adsorption/Desorption Characteristics of Typical Interior Building Materials. HVAC&R Research 5, 297-316, doi:10.1080/10789669.1999.10391240 (1999).
[19]S. Murakami, S. Kato, K. Ito & Q. Zhu. Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms. Indoor Air 13, 20-27, doi:10.1034/j.1600-0668.13.s.6.3.x (2003).
[20]Yuji Ataka et al. Study of effect of adsorptive building material on formaldehyde concentrations: development of measuring methods and modeling of adsorption phenomena. Indoor Air 14, 51-64, doi:10.1111/j.1600-0668.2004.00316.x (2004).
[21]横田知博, 加藤信介, 村上周三, 安宅勇二 & 徐長厚. 室内空気汚染濃度低減材の濃度低減性能に関する研究 : 実大スケールの居室モデルにおける室内空気汚染濃度低減材の室内化学物質低減効果に関する数値解析. 日本建築学会環境系論文集, 37-42 (2007).
[22]竹内健一郎, 加藤信介, 徐長厚 & 千野聡子. 標準住宅モデルにおけるパッシブ吸着建材の室内化学物質濃度低減効果に関する数値解析 (<特集>乱流シミュレーションと流れの設計). 生産研究 60, 14-17, doi:10.11188/seisankenkyu.60.14 (2008).
[23]Janghoo Seo, Shinsuke Kato, Yuji Ataka & Satoko Chino. Performance test for evaluating the reduction of VOCs in rooms and evaluating the lifetime of sorptive building materials. Building and Environment 44, 207-215, doi:http://dx.doi.org/10.1016/j.buildenv.2008.02.013 (2009).
[24]施卜誠. 溫熱環境變化對建材表面吸附甲醛性能之研究 碩士 論文, 國立成功大學, (2011).
[25]鄭凱文. 吸附性建材對室內甲醛濃度長期降低性能之研究 碩士 論文, 國立成功大學, (2012).
[26]熊建銀. 建材VOC散發特性研究:測定、微介觀詮釋及模擬, (2010).
[27]John C. Little, Alfred T. Hodgson & Ashok J. Gadgil. Modeling emissions of volatile organic compounds from new carpets. Atmospheric Environment 28, 227-234, doi:http://dx.doi.org/10.1016/1352-2310(94)90097-3 (1994).
[28]Qinqin Deng, Xudong Yang & Jianshun S. Zhang. Key factor analysis of VOC sorption and its impact on indoor concentrations: The role of ventilation. Building and Environment 47, 182-187, doi:http://dx.doi.org/10.1016/j.buildenv.2011.07.026 (2012).
[29]村上周三 et al. 揮発性有機化合物の放散・吸脱着等のモデリングとその数値予測に関する研究(その1) : 多孔質材料内部における温度依存性のある吸脱着を考慮した拡散現象のモデル化. 学術講演梗概集. D-2, 環境工学II, 熱, 湿気, 温熱感, 自然エネルギー, 気流・換気・排煙, 数値流体, 空気清浄, 暖冷房・空調, 熱源設備, 設備応用 1999, 691-692 (1999).
[30]C. S. Lee, F. Haghighat & W. S. Ghaly. A study on VOC source and sink behavior in porous building materials– analytical model development and assessment. Indoor Air 15, 183-196, doi:10.1111/j.1600-0668.2005.00335.x (2005).
[31]Yinping Zhang, Xiaoxi Luo, Xinke Wang, Ke Qian & Rongyi Zhao. Influence of temperature on formaldehyde emission parameters of dry building materials. Atmospheric Environment 41, 3203-3216, doi:http://dx.doi.org/10.1016/j.atmosenv.2006.10.081 (2007).
[32]Qinqin Deng, Xudong Yang & Jianshun Zhang. Study on a new correlation between diffusion coefficient and temperature in porous building materials. Atmospheric Environment 43, 2080-2083, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.12.052 (2009).
[33]沈鐘, 趙振國 & 康萬利. 膠體與表面化學-第四版. (2012).
[34]張杰. 活性碳吸附法. 化工技術 0053 (1997).
[35]近藤精一, 石川達雄 & 安部郁夫. 吸着の科学, 第2版. (2001).
[36]Stephen Brunauer, Lola S. Deming, W. Edwards Deming & Edward Teller. On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society 62, 1723-1732, doi:10.1021/ja01864a025 (1940).
[37]S. J. Gregg & K. S. W. Sing. Adsorption, Surface Area and Porosity. (Academic Press, 1982).
[38]Stephen Brunauer, P. H. Emmett & Edward Teller. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 60, 309-319, doi:10.1021/ja01269a023 (1938).
[39]Douglas M. Ruthven. Principles of Adsorption and Adsorption Processes. John Wiley & Sons (1984).
[40]林瑞泰. 多孔介質傳熱傳質引論. (科學出版社, 1995).
[41]E.L. Cussler. Diffusion:Mass Transfer in Fluid Systems, Third Edition. (Cambridg Univrsity Prsa, 2009).
[42]C.J. Geankoplis. Mass Transport Phenomena. (Holt, Rinehart and Winston, 1972).
[43]张文生. 科学计算中的偏微分方程有限差分法. (高等教育出版社, 2006).
[44]王新軻. 干建材VOC散發預測、測定及控制研究, (2007).
[45]鉾井修一, 池田哲朗 & 新田勝通. エース建築環境工学II-熱・湿気・換気-. (朝倉書店, 2002).
[46]S. C. Carniglia. Construction of the tortuosity factor from porosimetry. Journal of Catalysis 102, 401-418, doi:http://dx.doi.org/10.1016/0021-9517(86)90176-4 (1986).
[47]邢志航. 公寓式集合住宅「最適居住空間規模」之研究 博士 論文, 國立成功大學, (2005).
[48]張珩 & 邢志航. 地球環境危機時代國家永續居住環境之設計基準與策略研究---子計畫三:地球環境危機時代永續住居使用及規模之研究(II). 行政院國家科學委員會 (2002).
[49]黃玉立 & 徐怡雯. 高污染空品區有害空氣污染物本土暴露特性分析與資料庫建置---子計畫一:本土化生活型態及呼吸暴露係數資料庫之建置與評估. (2006).
[50]田中俊六, 武田仁, 足立哲夫 & 土屋喬雄. 最新建築環境工學-改訂2版. 井上書院 (1999).
[51]林憲德 & 黃國倉. 台灣TMY2標準氣象年之研究與應用. 建築學報, 79-94 (2005).
[52]江哲銘. 2011年版綠建材解說與評估手冊. (內政部建築研究所, 2011).
[53]中華民國行政院環境保護署. 健康風險評估技術規範. (2011).
[54]財團法人國家衛生研究院, 行政院衛生署國民健康局 & 行政院衛生署食品藥物管理局. 2009年國民健康訪問暨藥物濫用調查. (2012).
[55]國立臺灣大學公共衛生學院健康風險及政策評估中心. 臺灣一般民眾暴露參數彙編. Report No. DOH96-HP-1801, (國立臺灣大學公共衛生學院健康風險及政策評估中心, 2006).
[56]中華民國交通部觀光局. 2012年國人旅遊狀況調查. (2013).
[57]中華民國內政部統計處. 我國生命表. (2013).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-12-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-12-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw