進階搜尋


 
系統識別號 U0026-2601201011085800
論文名稱(中文) 風道內通過加熱的多孔性方柱之暫態流場及對流熱傳研究
論文名稱(英文) Study of Unsteady Flow and Convective Heat Transfer over a Heated Square Porous Cylinder in a Channel
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 98
學期 1
出版年 99
研究生(中文) 王仁宏
研究生(英文) Ren-Hung Wang
學號 p1892102
學位類別 博士
語文別 中文
論文頁數 163頁
口試委員 指導教授-吳鴻文
口試委員-吳文靜
口試委員-吳聖儒
口試委員-朱存權
口試委員-周煥銘
口試委員-張始偉
口試委員-葉榮華
中文關鍵字 多孔性方柱  孔隙率  達西數  浮力  多孔性方柱與風道之高度比 
英文關鍵字 Square porous cylinder  Porosity  Darcy number  Buoyancy  Channel-to-cylinder height ratio 
學科別分類
中文摘要 本文係以數值模擬進行水平風道內底部加熱的多孔性方柱之暫態流場與熱傳研究,具有多孔性介質區域內的統御方程式將採用暫態的Darcy-Brinkman-Forchheimer模式及能量方程式進行求解。此數值模擬是使用半隱性投射有限元素法,研究的參數包含孔隙率、達西數、雷諾數、格拉氏數及多孔性方柱高度與風道高度比,而這些參數對於流場及熱傳的效應已經被詳細探討。結果顯示達西數增加時,平均局部紐賽數將會增加。雷諾數增加時,平均局部紐賽數也會增加,特別是搭配高達西數時,其增加的幅度會更顯著;相比較下孔隙率對於熱傳的影響很小。而多孔性方柱高度與風道高度比增加時,熱傳效果也會增加。由局部紐賽數計算結果得知,B/H=0.1的時候浮力效應比B/H=0.3與B/H=0.5明顯。
英文摘要 A numerical study is made of the unsteady flow and convection heat transfer for a square porous cylinder with the heated cylinder bottom in a horizontal channel. The governing equations with the unsteady Darcy-Brinkman- Forcheimer model and energy equation for the region of square porous cylinder were solved. A semi-implicit projection finite element method in this work is used. The parameters studies include porosity, Darcy number, Reynolds number, Grashof number, and channel-to-cylinder height ratio and how they affect flow field and heat transfer performance have been explored in detail. The results indicate that the average local Nusselt number is augmented as the Darcy number increases. The average local Nusselt number increases as Reynolds number increases; in particular, the increase is more obvious at a higher Darcy number. In contrast, the porosity has slight influence on heat transfer. The heat transfer is augmented as the Darcy number and channel-to-cylinder height ratio increase. The buoyancy effect on the local Nusselt number is more clear for B/H = 0.1 than for B/H = 0.3 and B/H = 0.5.
論文目次 摘要.......................................................................................................I
英文摘要…………………………………………….......…………………..II
致謝......................................................................................................III
目錄…………………………………………………….......………...……..IV
表目錄................................................................................................VIII
圖目錄..................................................................................................IX
符號說明............................................................................................XIX第一章 緒論...........................................................................................1
1-1 研究動機與背景.........................................................................1
1-2 Darcy-Brinkman-Forchheimer 模式之概述...............................4
1-3 文獻回顧...................................................................................6
1-4 本論文探討之主題及方法........................................................12
第二章 多孔性方柱在風道中之層流流場及熱傳現象之數學模式 .........15
2-1 物理模式基本假設...................................................................15
2-2 多孔性方柱的假設...................................................................16
2-3 數學方程式..............................................................................17
2-4 基本統御方程式之無因次化 ....................................................20
2-5 流體與多孔性方柱之介面處理.................................................23
2-6 無因次尺度下的邊界條件........................................................24
第三章 數值分析.................................................................................26
3-1 有限元素法求解過程...............................................................27
3-2 時間項的處理..........................................................................29
3-3 投射技巧的介紹.......................................................................31
3-4 風道出口的處理.......................................................................33
3-5 紐賽數的介紹..........................................................................34
3-6 CL升力的介紹..........................................................................34
第四章 結果與討論 .............................................................................36
4-1 物理佈置與參數介紹 ...............................................................36
4-2 網格獨立與時間獨立的介紹.....................................................37
4-3 數值結果與參考文獻比較........................................................40
4-3-1 本文數值解與Hadim數值解比較.......................................41
4-3-2 本文數值解與Rachedi和Chikh數值解比較......................42
4-4 多孔性方柱之紐賽數位置的選取 .............................................43
4-5 強制對流情況時,雷諾數對多孔性方柱之熱傳與流場的影響............................................................................................45
4-6 強制對流情況時,孔隙率對多孔性方柱之熱傳與流場的影響............................................................................................47
4-7 強制對流情況時,達西數對多孔性方柱之熱傳與流場的影響............................................................................................48
4-8 在強制對流下,多孔性方柱之渦流釋出與升力係數的探討.......51
4-9 在強制對流下,達西數、孔隙率與雷諾數對多孔性方柱之平均時間紐賽數的影響......................................................................52
4-10 在混合對流情況下,達西數對多孔性方柱之熱傳與流場的影響..........................................................................................54
4-11 在混合對流情況下,格拉氏數對多孔性方柱之熱傳與流場的影響..........................................................................................56
4-12 在混合對流情況中, B/H比對多孔性方柱之熱傳與流場的影響..........................................................................................59
4-13 在混合對流下,B/H比、格拉氏數對多孔性方柱之渦流釋出與升力係數的探討....................................................................61
4-14 在混合對流下,不同B/H比、格拉氏數與達西數對多孔性方柱之平均時間紐賽數的影響 .....................................................62
第五章 結論與建議..............................................................................65
5-1 結論.........................................................................................65
5-2 未來研究方向之建議 ...............................................................66
參考文獻..............................................................................................67
自述...................................................................................................161
參考文獻 【1】 Nield, D. A., and Bejan, A., “Convection in Porous Media,” New York , Springer-Verlag, 1992.
【2】 Bejan, A., “Convection Heat Transfer,” New York, Wiley, 1984.
【3】 Plumb, O. A., and Huenefeld, J. C., "Non-Darcian Natural Convection from Heated Surface in Saturated Porous Media," Int. J. Heat Mass Transfer, Vol. 24, pp. 765-768, 1981.
【4】 Tien, C. L., and Hunt. M. L., "Boundary-Layer Flow and Heat Transfer in Porous Beds," Chem. Eng. Process, Vol. 21, pp. 53-63, 1987.
【5】 Beavers, G. S. and Sparrow, E. M., "Non-Darcy Flow through Fibrous Porous Media," J. Appl. Mech. Vol. 36, pp. 711-714, 1969.
【6】 Bejan, A. and Poulikakos, D., “The Non-Darcy Regime for Vertical Boundary Layer Natural Convection in a Porous Media,” Int. J. Heat Mass Transfer, Vol. 27, pp. 717-722, 1984.
【7】 Cheng, P., “Thermal Dispersion Effects in Non-Darian Convective Flows in a Saturated Porous Medium,” Letters in Heat Transfer, Vol. 8, pp. 267-270, 1981.
【8】 Forchheimer, P., "Wasserbewegung Durch Boden," Forschtlft Ver. D. Ing., Vol. 45, pp. 1782-1788, 1901.
【9】 Brinkman, H. C., "A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles," Appl. Sci. Res., Vol. 1, pp. 27-34, 1947.
【10】 Hadim, A., “Forced Convection in Porous Channel with Localized Heat Sources,” J. Heat Transfer, Vol.116, pp. 465-472, 1994.
【11】 Fu, W.S., Huang, H.C. and Liou, W. Y., “Thermal Enhancemrent in Laminar Channel Flow with a Porous Block,” Int. J. Heat Mass Transfer, Vol. 39, pp. 2165-2175, 1996.
【12】 Sung, H. J., Kim, S. Y. and Hyun, J. M., “Forced Convection from an Isolated Heat Source in a Channel with Porous Medium,” Int. J. of Heat and Fluid Flow, Vol. 16, pp. 527-535, 1995.
【13】 Huang, P. C. and Vafai, K., “Analysis of Forced-convection Enhancement in a Channel using Porous Blocks,” J. of Thermophysics and Heat Transfer, Vol. 8, pp. 563-573, 1994.
【14】 Chikh, S., Boumedien, A., Bouhadef, K. and Lauriat, G., “Analysis of Fluid and Heat Transfer in a Channel with Intermittent Heated Porous Bocks,” Heat and Mass Transfer, Vol. 33, pp. 405-413, 1998.
【15】 Huang, P. C., Yang, C. F., Hwang, J. J. and Chiu, M. T., “Enhancement of Forced-Convection Cooling of Multiple Heated Blocks in a Channel using Porous Covers, Int.” J. Heat Mass Transfer, Vol. 48, pp. 647-664, 2005.
【16】 Jue, T. C., “Numerical Analysis of Vortex Shedding behind a Porous Square Cylinder,” International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 14, pp. 649-663, 2004.
【17】 Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T., “Numerical Analysis for the Flow past a Porous Square Cylinder based on the Stress-Jump Interfacial-Conditions,” Int. J. of Numerical Methods for Heat & Fluid Flow, Vol. 18, pp. 635-655, 2008.
【18】 Ould-Amer, Y., Chikh, S., Bouhadef, K. and Lauriat, G., “Forced Convection Cooling Enhancement by use of Porous Materials,” Int. J. of Heat and Fluid Flow, Vol. 19, pp. 251-258, 1998.
【19】 Jiang, P. X., Li, M., Lu, T. J., Yu, L. and Ren, Z. P., “Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels,” Int. J. of Heat and Mass Transfer, Vol. 47, pp. 2085-2096, 2004.
【20】 Kahalerras, H. and Targui, N., “Numerical Analysis of Heat Transfer Enhancement in a Double Pipe Heat Exchanger with Porous Fins,” Int. J. of Numerical Methods for Heat & Fluid Flow, Vol. 18, pp. 593-617, 2008.
【21】 Yen, Y. L., Huang, P. C., Yang, C. F. and Chen, Y. J., “Numerical Study of Heat Transfer of a Porous-Block-Mounted Heat Source Subjected to Pulsating Channel Flow,” Numerical Heat Transfer, Part A, Vol. 54, pp. 426-449, 2008.
【22】 Calmidi, V. V. and Mahajan, R. L., “Forced Convection in High Porosity Metal Foams,” J. of Heat Transfer, Vol. 122, pp. 557-565, 2000.
【23】 Pavel, B. I. and Mohamad, A. A., “An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted with Porous Media,” Int. J. of Heat and Mass Transfer, Vol. 47, pp. 4939-4952, 2004.
【24】 Prasad, V., Lai, F. C. and Kulacki, F. A., “Mixed Convection in Horizontal Porous Layers Heated from Below,” ASME J. Heat Transfer, Vol. 110, pp. 395-402, 1988.
【25】 Hwang, G. J. and Chao, C. H., “Effects of Wall Conduction and Darcy Number on Laminar Mixed Convection in a Horizontal Square Porous Channel,” ASME J. Heat Transfer, Vol. 114, pp. 614-621, 1992.
【26】 Rachedi, R. and Chikh, S., “Enhancement of Electronic Cooling by Insertion of Foam Materials,” Heat and Mass transfer, Vol. 37, pp.371-378, 2001.
【27】 Bao, J. H., Hyun, J. M. and Kim, J. W., “Mixed Convection in a Channel with Porous Multiblocks under Imposed Thermal Modulation,” Numer. Heat transfer A, Vol. 46, pp.891-908, 2004.
【28】 Jaballah, S., Bennacer, R., Sammouda, H. and Belghith, A., “Simulation of Mixed Convection in a Channel Partially Filled with Porous Media,” Progress in Computation Fluid Dynamics, Vol. 6, pp.335-341, 2006.
【29】 Jaballah, S., Bennacer, R., Sammouda, H. and Belghith, A., “Numerical Simulation of Mixed Convection in a Channel Irregularly Heated and Partially Filled with a Porous Media,” J. of porous media, Vol. 11, pp.247-257, 2008.
【30】 Cimpean, D., Pop, I., Ingham, D. B. and Merkin, J. H., “Fully Developed Mixed Convection Flow between Inclined Parallel Plates Filled with a Porous Medium, ”Transport in porous media, Vol. 77, pp.87-102, 2009.
【31】 Chou, F. C., Cheng, C. J. and Lien, W. Y., “Analysis and Experiment of Non-Darcian Convection in Horizontal Square Packed-Sphere Channels-II. Mixed Convection,” Int. J. Heat Mass Transfer, Vol. 35, pp. 1197-1207, 1992.
【32】 Kurtbas, I. and Celik, N., “Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel,” Int. J. Heat Mass Transfer, Vol. 52, pp. 1313-1325, 2009.
【33】 Nithiarasu, P., Seethararamu, K. N. and Sundararajan, T., “ Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium,” Int. J. Heat Mass Transfer, Vol. 40, pp. 3955-3967, 1997.
【34】 Jue, T. C., “Analysis of Thermal Convection in a Fluid-Saturated Porous Cavity with Internal Heat Generation,” Heat and Mass Transfer, Vol. 40, pp. 83-89, 2003.
【35】 Yang, R.J. and Fu, L.M., “Thermal and Flow Analysis of a Heated Electronic Component,” Int. J. Heat Mass Transfer, Vol. 44, pp. 2261-2275, 2001.
【36】 Turki, S., Abbassi, H. and Nasrallah, S. B., “Two-Dimensional Laminar Fluid Flow and Heat Transfer in a Built-in Square Cylinder,” Int. J. Therm. Sci., Vol. 42, pp. 1105-1113, 2003.
【37】 Rosales, J. L., Ortega, A. and Humphrey, J. A. C., “A numerical Investigation of the Convection Heat Transfer in Unsteady Laminar Flow past a Single and Tandem pair of Square Cylinders in a Channel,” Num. Heat Trans. A, Vol. 38, pp. 443-465, 2000.
【38】 Dhiman, A. K., Chhabra, R. P. and Eswaran, V., “Steady Mixed Convection across a Confined Square Cylinder,” Int. Comm. Heat Mass Transfer, Vol. 35, pp. 47-45, 2008.
【39】 Dhiman, A. K., Anjajah, N., Chhabra, R. P. and Eswaran, V., “Mixed Convection from a Heated Square Cylinder to Newtonian and Power-Law Fluids, Trans. ASME J. Fluids Eng., Vol. 129, pp. 506-513, 2007.
【40】 Sharma, A. and Eswaran, V., “Effect of Channel-Confinement and Aiding/Opposing Buoyancy on the Two-Dimensional Laminar Flow and Heat Transfer across a Square Cylinder,” Int. J. Heat Mass Transfer, Vol. 48, pp. 5310-5322, 2005.
【41】 Perng, S. W. and Wu, H. W., “Buoyancy-Aided/Opposed Convection Heat Transfer for Unsteady Turbulent Flow across a Square Cylinder in a Vertical Channel.” Int. J. Heat Mass Transfer, Vol. 50, pp. 3701-3717, 2007.
【42】 Ramaswamy, B., Jue, T. C. and Akin. J. E., “Semi-Implicit and Explicit Finite Element Schemes for Coupled Fluid/Thermal Problems,” Int. J. Numer Methods Eng., Vol. 34, pp 75-96,1992.
【43】 Ramaswamy, B. and Jue. T. C., “Some Recent Trends and Developments in Finite Element Analysis for Incompressible Thermal Flows,” Int. J. Numer Methods Eng., Vol. 35, pp. 671-707, 1992.
【44】 許國偉,“強制脈衝流動配合多孔性熱沈於電子元件冷卻之探討”,國立中山大學機械與機電工程學系研究所碩士,2001.
【45】 林億軒,“同心及偏心圓球內之多孔性介質中變黏度流體的自然對流與熱傳研究”,國立成功大學造船暨船舶機械工程研究所碩士論文,2003.
【46】 Incropera, D. W. and Frank, P., “Fundamentals of Heat and Mass Transfer 6th,” Hoboken, Wiley, 2007.
【47】 Patankar, S. V., “Numerical Heat Transfer and Fluid Flow,” New York, Mc Graw Hill, 1980.
【48】 Hoffmann, K. A., “Computational Fluid Dynamics for Engineers,” Austin, USA: Engineering Education System, 1989.
【49】 Tannehill, J. C., Anderson, D. A. and Pletcher, R. H., “Computational Fluid Mechanics and Heat Transfer,” Washington, Taylor & Francis, 1997.
【50】 馬鐵猶,“計算流體動力學” ,良宜圖書有限公司, 1985.
【51】 Canuto, C., “Spectral Methods: Fundamentals in Single Domains,” Berlin, Springer-Verlag, 2006.
【52】 Thomas, J. W., “Numerical Partial Differential Equations: Finite Difference Methods,” New York, Springer, 1985.
【53】 Malalasekera, W., “An Introduction to Computational Fluid Dynamics: the Finite Volume Methods,” London, Longman, 1995.
【54】 Reddy, J. N., “An Introduction to the Finite Element Method,” New York, McGraw-Hill, 1993.
【55】 Pironneau, O., “Finite Element Method for Fluids,” Chichester, Wiley, 1989.
【56】 王至勤,“有限元素法”,曉園出版社, 1985.
【57】 Burden, R. L. and Faires, J. D., “Numerical Analysis,” Australia, Thomson Brooks, 2005.
【58】 黃德湧,“數值方法與Fortran”, 儒林圖書公司, 1986.
【59】 施澄鐘, “數值分析”, 松岡電腦圖書資料有限公司, 1989.
【60】 彭相武,“應用大渦漩數值模擬於引擎汽缸內之紊流流場與熱傳現象研究”,國立成功大學造船暨船舶機械工程研究所博士論文,2003.
【61】 彭相武,“二維通道混合對流下電子元件之熱傳增益效應分析”,國立成功大學造船暨船舶機械工程研究所碩士論文,1997.
【62】 Chorin, A. J., “Numerical Solution of Navier-Stokes Equations,” Mathematics of Computation, Vol. 22, pp. 745-762, 1968.
【63】 Currie, I. G., “Fundamental Mechanics of Fluids,” New York, McGraw-Hill, 1993.
【64】 Fox, R. W. and McDonald, A. T., “Introduction to Fluid Mechanics 5th,” New York, Wiley, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-01-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-01-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw