進階搜尋


下載電子全文  
系統識別號 U0026-2601201002092100
論文名稱(中文) 氣壓輔助接觸轉印與遮罩植入微影技術製作高頻表面聲波元件
論文名稱(英文) Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography for Fabrication of High Frequency Surface Acoustic Wave (SAW) Devices
校院名稱 成功大學
系所名稱(中) 機械工程學系專班
系所名稱(英) Department of Mechanical Engineering (on the job class)
學年度 98
學期 1
出版年 99
研究生(中文) 郭家銘
研究生(英文) Chia-Ming Kuo
學號 n1794105
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-李永春
口試委員-蕭飛賓
口試委員-朱聖緣
中文關鍵字 氣壓輔助接觸轉印  高頻表面聲波元件  模態耦合理論  奈米壓印  壓電基板  網路分析儀 
英文關鍵字 Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography  high frequency SAW devices  COM  nanoimprinting  piezoelectric substrate  network analyzer 
學科別分類
中文摘要 本論文主要探討如何利用氣壓輔助接觸轉印與遮罩植入式微影技術(Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography) 製作商業化的高頻表面聲波 (SAW) 元件。
理論部份採用B.P. Abbott所提出的模態耦合理論作為高頻表面聲波元件的表現模擬方法,其中主要的參數為波傳損失、反射係數、電性轉換係數、金屬薄膜電阻、單位長度電容及表面波速。
接觸轉印法主要是用來製作微機電製程中所需要的遮罩 (Mask),而氣壓輔助法是利用氣壓可以均勻的施力於物體的表面上,即使是不平的表面,因此可以得到較佳的轉印效果,以厚度約50 nm的鉻金屬為遮罩,直接以氣壓輔助奈米壓印機轉印到已旋塗聚甲基丙烯酸甲脂樹脂(PMMA) 的壓電基板上,接著再利用反應式離子蝕刻機 (RIE),以氧電漿蝕刻無覆鉻層的部份,再以電子束蒸鍍機鍍上作為電極用的鋁層,最後再以丙酮舉離 (lift off) 剩餘之PMMA及鉻層,便完成所需的高頻表面聲波元件。此外本文亦將討論模仁重覆使用之議題。
以向量式網路分析儀量測所製作之高頻表面聲波元件,並與理論求得之結果作比較。
英文摘要 This paper will discuss how to use “Air Pressure Assisted Contact-Transfer and Mask Embedded Lithography” method for fabrication of high frequency surface acoustic wave (SAW) devices that is already used in some communication module.
We will analyze the SAW devices by using “Coupling-of-Modes” (COM) theory that is presented by B.P. Abbott et al. The 6 major parameters: propagation loss, reflection coefficient, transduction coefficient, thin film resistance, distributed finger capacitance, and the surface acoustic wave velocity will be discussed.
The contact-transfer imprinting method is newly developed to fabricate the metal mask layer of the MEMS process in recent years. And the air assisted contact-transfer imprinting method will lead to a more stable and better result due to its uniform pressure while imprinting. First, we use 50 nm Cr layer for the mask. Then we use O2 plasma to etch the PMMA layer. Finally, we get the SAW devices by using acetone to lift off.
We will demo how to use network analyzer to verify the SAW devices and imprinting mold re-use method in this paper.
論文目次 摘要…………………………………………………………….……………Ⅰ
Abstract…………………………………………………………….………Ⅱ
誌謝………………………………………………………………….………Ⅲ
目錄……………………………………………………………….…………Ⅳ
表目錄……………………………………………………………….…….ⅤII
圖目錄……………………………………………………………………..VIII
符號說明…………………………………………………………………...XII
第一章 緒論…………………………………….………………………...….1
1-1研究背景與目的………………….………………………………….1
1-2文獻回顧………………………………………..……………………3
1-2.1表面聲波元件…………………………………………………...3
1-2.2奈米壓印技術…………………………………………………...4
1-3本文架構……………………………………….…………………...12
第二章 表面聲波元件理論與設計參數…………………………………...13
2-1 壓電材料特性………………………………..……………………13
2-1.1 壓電效應……………………...……………………………....13
2-1.2 壓電基板特性…………………..…….……………………....13
2-2表面聲波濾波器原理與特性……………………………………...15
2-2.1 二次效應…………………………………...…………………15
2-2.2 金屬電極柵欄………………………...………………………17
2-3表面聲波元件理論……………………………………..………….19
2-4 [P]矩陣參數……………………….………………………………22
2-4.1 波傳損失…………………………………………….…….….22
2-4.2 反射係數…………………………...………………………....23
2-4.3 電性轉換係數………………………...……………………....24
2-4.4 薄膜電阻……………………………………...……………....24
2-4.5 電容…………………………………………………......…….25
2-4.6 表面波波速………………………...…………………...…….25
2-5 表面聲波元件參數………………………………….….……...….26
2-5.1 壓電基板的選擇………………………...……….…..……….26
2-5.2 交指叉電極設計參數………………………...……...……….27
第三章 實驗流程……………………………………………………...……30
3-1 模仁準備及前處理……………………………………..……...….30
3-1.1晶圓切割……………………..………………….………...…..30
3-1.2 模仁與基板清洗…………………………...……………...….32
3-2 氣壓輔助金屬遮罩轉印製程……………………..………………33
3-2.1 蒸鍍抗沾黏………………………………...…………………33
3-2.2 金屬遮罩之蒸鍍……………………………...………………35
3-2.3 氣壓輔助金屬轉印………..………………….………………37
3-3 交指叉金屬電極製程……………………………………….…….40
3-3.1 光阻蝕刻……………………………………...………………40
3-3.2 鋁電極蒸鍍…………………………………………………...41
3-3.3 舉離………………………………………………………...…42
第四章 實驗結果與高頻訊號量測………………………………………...43
4-1表面聲波元件製作結果…………………………………………...43
4-2 高頻訊號量測……………………………………………...……...54
4-2.1 量測儀器架構………………………………………………...54
4-2.2 量測方法……………………………………………………...57
4-2.3 量測結果與理論模擬結果之比較…………………………...58
4-3 模仁重覆使用性驗證……………………………………………..61
第五章 結論與未來展望………………………………………………...…63
5-1 結論………………………………………………………….…….63
5-2 未來展望…………………………………………………….…….65
參考文獻…………………………………………………………………….66
參考文獻 [1] 王誌麟,零組件雜誌,西元2009年8月號

[2] L. Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid,” Pro. London Math. Soc., Vol. 7, pp. 4-11, 1885.

[3] R.M. White and F.W. Voltmer, ‘Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., Vol. 17, pp. 314-316, 1965.

[4] R.H. Tancrell and M.G. Holland, “Acoustic Surface Wave Filters,” Proc. IEEE, Vol. 59, pp.393-409, 1971

[5] C.S. Hartmann, D.T. Bell, Jr. and R.C. Rosenfeld, “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. On Microwave Theory and Techniques, Vol. MTT-21, pp. 162-175,1973.

[6] W.P. Mason, Electromechanical Transducers and Wave Filters, van Nostrand Company, 2nd Edition, 1948..

[7] W.P. Mason, Physical Acoustics, Vol. 1A, Academic Press, 1964.

[8] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J. Show, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Trans. On Microwave Theory and Techniques, Vol. MTT-17, pp. 856-864, 1969.

[9] W.R. Smith, “Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers,” IEEE Trans. On Microwave Theory and Techniques, pp. 960-964, 1974.

[10] P.S. Cross and R.V. Schmidt, “Coupled Surface-Acoustic-Wave Resonators,” Bell System Tech. Journal, Vol. 56, pp. 1447-1482, 1977.

[11] P.V. Wright, “A new generalized modeling of SAW transducers and gratings,” Pro. 43th Frequency Control Symp., pp. 596-605, 1989.

[12] B.P. Abbott, C.S. Hartmann and D.C. Malocha, “A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries,”IEEE Ultrason. Symp., pp.129-134, 1989.

[13] B.P. Abbott, “A Coupling-of-Modes Model for SAW Transducers with Arbitrary Reflectivity Weighting,” the Department of Electrical Engineering at University of Central Florida Orlando, Florida, 1989.

[14] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 1995.

[15] C.G. Willson, et al., “Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning,” Proc. SPIE, 3676(I):379(1999)

[16] Byron D. Gates, Qiaobing Xu, Michael Stewart, Declan Ryan, C.G. Willson, and G.M. Whitesides, “New Approaches to Nanofabrication: Molding, Printing, and Other Techniques,” Chem. Rev105, 1171-1196, 2005.

[17] Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153(1998)

[18] G.M. Whitesides, et al., ADVANCED MATERIALS, 8(12), 1015(1996)

[19] Stephen Y. Chou, Chris Keimel & Jian Gu, Nature, Vol. 417(20), pp. 835-837, 2002

[20] C.H. Chen, C.P.Liu, Y.C. Lee, F.B. Hsiao, C.Y. Chiu, M.H. Chung and M.H. Chiang, “IR Laser-Assisted Micro/Nano Imprinting” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1463-1467, 2006.

[21] Y.C. Lee and C.Y. Chiu, “A New Micro/Nano-Lithography Based on Contact Transfer of Thin Film and Mask Embedded Etching” Journal of Advanced materials, Submitted date”

[22] C.K. Campell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, New York:Academic Press, 1998.

[23] Ken-ya Hashimoto, Surface Acoustic Wave Devices in Telecommunications: modeling and simulation, Springer, 2000.

[24] D.P. Morgan, Surface-wave devices for signal processing, Elsevier, 1985.

[25] T. Thorvaldsson, “Analysis of The Natural Single Phase Unidirectional SAW Transducer,” IEEE Ultrason. Symp.,pp. 911-96, 1989.

[26] M. Beck, M. Graczyk, I. Maximov, E.L. Sarwe, T.G.I. Ling, M. Keilb, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography”, Microelectronic Engineering 61-62, pp. 441-448
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-02-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-01-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw