進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2512201817290200
論文名稱(中文) 光遺傳學調控運動皮質興奮性與半腦帕金森氏症大鼠之行為表現
論文名稱(英文) Modulation of motor excitability and hemiparkinsonian behavior by cortical optogenetic stimulation
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 1
出版年 107
研究生(中文) 吳軍緯
研究生(英文) Chun-Wei Wu
學號 P88991026
學位類別 博士
語文別 英文
論文頁數 53頁
口試委員 指導教授-陳家進
口試委員-蕭富仁
口試委員-林宙晴
口試委員-彭志維
口試委員-邱文泰
口試委員-謝宗勳
中文關鍵字 皮質電刺激  重複經顱磁刺激  光遺傳  局部場電位  神經可塑性  帕金森氏症 
英文關鍵字 theta burst stimulation  cortical electrical stimulation  repetitive transcranial magnetic stimulation  optogenetics,local field potential  neuroplasticity  Parkinson’s disease  6-OHDA 
學科別分類
中文摘要 帕金森氏症好發於老人族群,約有1~3%患疾。然而目前仍無根治療法,僅有紓緩症狀的支持性療法。皮質刺激術可調節運動塑性,若能充分了解其神經迴路機制,可望發展成為帕金森氏症的新興療法,近來獲得越來越多關注。間斷型與連續型theta burst刺激法(TBS)原是應用於重複經顱磁刺激術中,分別可促進與抑制運動皮質興奮性,但是其機制尚未明朗。經顱磁刺激線圈涵蓋腦區範圍廣,可造成刺激範圍內所有神經纖維的興奮,對神經元的選擇性低,難以利用其專一性地探討TBS所涉及的神經迴路機制。
本研究的第一部分,是利用光基因刺激法探討主要運動皮質區的興奮性神經元,在TBS所引發的塑性變化中涉及的機制。將第二型光敏通道蛋白(ChR2)透過CaMKII啟動子專一性地表現於主要運動皮質區麩胺酸神經元中,以自製的光電極雷射探頭進行光刺激並同步記錄所誘發之場電位變化。結果顯示,不論是皮質電刺激法或是光基因刺激法的間斷型TBS,皆可增強運動誘發電位的活性;而在施行連續型TBS時,皮質電刺激法的連續型TBS可抑制運動誘發電位的活性,反之光基因刺激法的連續型TBS可增強運動誘發電位的活性。這個差異現象可能源自於電刺激和光基因刺激所標定的細胞種類的不同。而這個觀察也支持了皮質神經迴路組成的多樣性可決定皮質電刺激對運動塑性調控的方向之假設。
在第二部分的研究中,我們開發了一個以紅外線遠端遙控的無線光基因系統,來探討清醒大鼠的皮質光基因刺激對半腦帕金森氏症的行為影響。無線系統的運作原理為:使用者經由電腦LabVIEW程式所產生的刺激波型,經由紅外線LED傳輸至大鼠頭上的可拆卸式接收器轉換成藍光微型LED的驅動電壓訊號,驅動植入式光電極產生藍光訊號。藍光經由光纖導入組織中,其所誘發之光基因誘發電位則經由白金電極偵測後,透過無線電頻率傳輸至LabVIEW使用者介面進行儲存與分析,並且達成刺激與神經反應記錄的同步化。先前的研究發現,丘腦底核(STN)區域的傳入神經纖維是治療帕金森氏症的深腦刺激的主要目標,並且該傳入神經纖維是源自於主要運動皮質區第五層神經元,可受皮質光基因刺激而成為靶標。為了測試這種現象,我們在自由移動的單側帕金森病大鼠上,利用無線光基因刺激器在同側主要運動皮質區第五層神經元中進行刺激。結果顯示,皮質光基因刺激可增強阿撲嗎啡所誘導的旋轉行為。這一發現與其他人認為的,主要運動皮質刺激可能通過影響單側基底核中多巴胺系統的活性,來調節帕金森氏症的症狀一致。總之,這項研究表明,使用光基因刺激進行聚焦和細胞類型專一性腦刺激,可以擴展應用於探索神經可塑性機制,並用於精確靶向帕金森氏症的症狀相關神經迴路。未來,經由淺層的運動皮質刺激,可能足以取代深腦電刺激,成為帕金森氏症的創新療法。
英文摘要 Parkinson’s disease (PD) attacked 1-3% of population of elders. Still, there is no cure but only supporting managements that can provide relief from the symptoms. Cortical stimulation has gained more and more attention as a potential PD treatment because of its capability to modulate motor plasticity. Intermittent theta burst stimulation (iTBS) and continuous theta burst stimulation (cTBS) are protocols used in repetitive transcranial magnetic stimulation (rTMS) to facilitate or suppress corticospinal excitability. However, rTMS excite all types of neuron in the target cortex probed by the coil, making it difficult to differentiate the effect of TBS on specific neural circuits involved in motor plasticity.
Using optogenetic approach to probe excitatory neurons in primary motor cortex (M1), the first part of this study was aim to investigate the mechanism beneath cortical TBS. Light-sensitive channelrhodopsin-2 (ChR2) was expressed in the glutamatergic neuron in the M1 driven by the CaMKIIα promoter. A custom-made optrode comprising an optical fiber and a metal cannula electrode was fabricated to achieve optogenetic stimulation and simultaneous local field potential (LFP) recording. Results show that both cortical electrical stimulation-iTBS (CES-iTBS) and optogenetic iTBS (Opto-iTBS) can potentiate motor-evoked potential (MEP) activity. However, CES-cTBS suppressed MEP activity whereas Opto-cTBS enhanced it. This discrepancy may have resulted from the different neural networks targeted by the two TBS modalities, with CES-cTBS exciting all types of neuron and Opto-cTBS targeting excitatory neuron specifically. The results support the idea that intra-cortical networks determine the variation of TBS-induced neuroplasticity.
In the second part of the study, an infrared (IR)-controlled wireless optogenetic system had been developed for modulation of hemiparkinsonian behavior. The stimulation waveforms obtained from IR-signals can precisely control the fast switching of an implanted micro LED (LED)-optrode mounted on the rat’s skull. Evoked potentials were collected and transmitted through a commercial wireless radio frequency (RF)-headstage. Synchronization between stimulation and recording can be achieved for further processing. Previous study identified the afferents to the subthalamic nucleus (STN) region is a major target of deep brain stimulation (DBS) in PD therapy, and this region can also be target by delivering optogenetic stimulation on M1 layer V neurons. To test this phenomenon, we applied cortical modulation in ipsilateral M1 layer V through wireless optogenetic stimulator on the freely moving hemiparkinsonian rat. Results showed that apomorphine-induced rotational behavior was enhanced after ipsilateral M1 modulation. This finding agreed with others that M1 modulation might regulate PD symptom through affecting activity of dopamine system, which can be challenged using apomorphine or amphetamine. In sum, this study shows that focalized and cell-type-specific brain stimulation using the optogenetic approach can be extended for further exploration of neuroplasticity, and for precise targeting neural circuitry in PD.
論文目次 Table of Content
摘要 i
Abstract iii
誌謝 v
Table of Content vi
Table of Figure viii
Chapter 1 Introduction 1
1.1 Parkinson’s disease (PD) 1
1.2 Hemiparkinsonian model 2
1.3 Theta burst stimulation (TBS) 3
1.4 Mechanism of TBS 4
1.5 Optogenetics 5
1.6 Wireless optogenetic systems 6
1.7 Optogenetic studies in PD models 9
1.8 Aim of the study 10
Chapter 2 Materials and Methods 13
2.1 System framework 13
2.2 Hardware design 13
2.3 Laser optrode design 16
2.4 Animal preparation 18
2.5 Hemiparkinsonian model 18
2.6 Lentivirus production 19
2.7 Virus injection and optrode implantation 19
2.8 Measurement of optogenetic-evoked potentials 20
2.9 Measurement of MEP 21
2.10 TBS treatment 21
2.11 Histological examination 22
2.12 Data analysis 23
Chapter 3 Results 24
3.1 Construction of optogenetic interface 24
3.2 In vivo optogenetic-evoked potentials in anesthetized rats 25
3.3 Effects of TBS on MEP activity 27
3.4 Construction of wirelessly optogenetic interface 31
3.5 Optogenetic-evoked potentials in awake ChR2-rats 34
3.6 Optogenetic stimulation on ipsilateral M1 enhance apomorphine-induced rotation of hemiparkinsonian rat 37
Chapter 4 Discussion 39
4.1 Optogenetic modulation of motor plasticity 39
4.2 Wirelessly optogenetic modulation of PD symptom 42
Chapter 5 Conclusion 47
Chapter 6 Future Works 48
References 49
參考文獻 References
Ameli R, Mirbozorgi A, Neron J-L, Lechasseur Y, Gosselin B. A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording. Conf Proc IEEE Eng Med Biol Soc, 20135662-5, 2013.
Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng, 4(3): S143-56, 2007.
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol, 65(2): 135-72, 2001.
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8(9): 1263-8, 2005.
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging, 24(2): 197-211, 2003.
Cárdenas-Morales L, Nowak DA, Kammer T, Wolf RC, Schönfeldt-Lecuona C. Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topogr, 22(4): 294-306, 2010.
Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat protoc, 5(2): 247-54, 2010.
Chen FB, Budgett DM, Sun Y, Malpas S, McCormick D, Freestone PS. Pulse-width modulation of optogenetic photo-stimulation intensity for application to full-implantable light sources. IEEE Trans Biomed Circuits Syst, 11(1): 28-34, 2017.
De Gaspari D, Siri C, Landi A, Cilia R, Bonetti A, Natuzzi F, Morgante L, Mariani CB, Sganzerla E, Pezzoli G, Antonini A. Clinical and neuropsychological follow up at 12 months in patients with complicated Parkinson's disease treated with subcutaneous apomorphine infusion or deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatry , 77(4): 450-3, 2006.
Degos B, Deniau JM, Le Cam J, Mailly P, Maurice N. Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur J Neurosci, 27(10): 2599-610, 2008.
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci, 18(9): 1213-25, 2015.
Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol, 175(2): 303-17, 2002.
Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol, 592(19): 4115-28, 2014.
Ellens DJ, Leventhal DK. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease. J Parkinsons Dis, 3(3): 241-54, 2013.
Fan D, Rich D, Holtzman T, Ruther P, Dalley JW, Lopez A, Rossi MA, Barter JW, Salas-Meza D, Herwik S, Holzhammer T, Morizio J, Yin HH. A wireless multi-channel recording system for freely behaving mice and rats. PloS One, 6(7): e22033, 2011.
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci, 34389-412, 2011.
Fonoff ET, Pereira JF, Camargo LV, Dale CS, Pagano RL, Ballester G, Teixeira MJ. Functional mapping of the motor cortex of the rat using transdural electrical stimulation. Behav Brain Res, 202(1): 138-41, 2009.
Gagnon-Turcotte G, Kisomi AA, Ameli R, Camaro C-OD, Lechasseur Y, Néron JL, Bareil PB, Fortier P, Bories C, De Koninck Y, Gosselin B. A wireless optogenetic headstage with multichannel electrophysiological recording capability. Sensors, 15(9): 22776-97, 2015.
Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl, 5055-66, 1997.
Gonzalez-Garcia N, Armony JL, Soto J, Trejo D, Alegria MA, Drucker-Colin R. Effects of rTMS on Parkinson's disease: A longitudinal fMRI study. J Neuro, 258(7): 1268–80, 2011.
Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science, 324(5925): 354-9, 2009.
Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci, 27(52): 14231-8, 2007.
Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex, 23(7): 1593-605, 2013.
Hashimoto M, Hata A, Miyata T, Hirase H. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics, 1(1): 011002, 2014.
Hess G, Donoghue JP. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol Exp, 56(1): 397-405, 1996.
Hoogendam JM, Ramakers GMJ, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul, 3(2): 95-118, 2010.
Hsieh T-H, Huang YZ, Chen JJ, Rotenberg A, Chiang YH, Chien WS, Chang V, Wang JY, Peng CW. Novel use of theta burst cortical electrical stimulation for modulating motor plasticity in rats. J Med Biol Eng, 35(1): 62-8, 2015a.
Hsieh TH, Huang YZ, Rotenberg A, Pascual-Leone A, Chiang YH, Wang JY, Chen JJ. Functional dopaminergic neurons in substantia nigra are required for transcranial magnetic stimulation-induced motor plasticity. Cereb Cortex, 25(7): 1806-14, 2015b.
Huang X, Chen YY, Shen Y, Cao X, Li A, Liu Q, Li Z, Zhang LB, Dai W, Tan T, Arias-Carrion O, Xue YX, Su H, Yuan TF. Methamphetamine abuse impairs motor cortical plasticity and function. Mol Psychiatry, 22(9): 1274-81, 2017.
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron, 45(2): 201-6, 2005.
Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res, 70(1): 124-7, 2011.
Jia Y, Khan W, Lee B, Fan B, Madi F, Weber A, Li W, Ghovanloo M. Wireless opto-electro neural interface for experiments with small freely behaving animals. J Neural Eng, 15(4): 046032, 2018.
Kale RP, Kouzani AZ, Walder K, Berk M, Tye SJ. Evolution of optogenetic microdevices. Neurophotonics, 2(3): 031206, 2015.
Kim Ti, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Song J, Song YM, Pao HA, Kim RH, Lu C, Lee SD, Song IS, Shin G, Al-Hasani R, Kim S, Tan MP, Huang Y, Omenetto FG, Rogers JA, Bruchas MR. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science, 340(6129): 211-6, 2013.
Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622-6, 2010.
Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med, 339(15): 1044-53, 1998.
Larson J, Munkácsy E. Theta-burst LTP. Brain Res, 162138-50, 2015.
Larson J, Wong D, Lynch G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res, 368(2): 347-50, 1986.
Lee ST, Williams PA, Braine CE, Lin D-T, John SWM, Irazoqui PP. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator. IEEE Trans Neural Syst Rehabil Eng, 23(4): 655-64, 2015.
Otchy TM, Wolff SBE, Rhee JY, Pehlevan C, Kawai R, Kempf A, Gobes SMH, Ölveczky BP. Acute off-target effects of neural circuit manipulations. Nature, 528(7582): 358-63, 2015.
Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, Chander D, Richner TJ, Williams J. Optogenetic brain interfaces. IEEE Rev Biomed Eng, 73-30, 2014.
Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS. A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res, 494(2): 285-93, 1989.
Rossi MA, Go V, Murphy T, Fu Q, Morizio J, Yin HH. A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front Integr Neurosci, 98, 2015.
Sanders TH, Jaeger D. Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis, 95225-37, 2016.
Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study. Brain, 123(Pt 11): 2297-305, 2000.
Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 64579-87, 2013.
Seeger-Armbruster S, Bosch-Bouju C, Little STC, Smither RA, Hughes SM, Hyland BI, Parr-Brownlie LC. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced Parkinsonian rats. J Neurosci, 35(3): 1211-6, 2015.
Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson's disease and schizophrenia. Faseb J, 4(10): 2737-44, 1990.
Sparta DR, Stamatakis AM, Phillips JL, Hovelso N, van Zessen R, Stuber GD. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc, 7(1): 12-23, 2011.
Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell JC. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul, 9(3):323-335, 2016.
Udupa K, Chen R. Motor cortical plasticity in Parkinson’s disease. Front Neurol, 4:128, 2013.
Wang J, Wagner F, Borton DA, Zhang J, Ozden I, Burwell RD, Nurmikko AV, van Wagenen R, Diester I, Deisseroth K. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng, 9(1): 016001, 2012.
Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng, 8(4): 046021, 2011.
Wischnewski M, Schutter DJLG. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul, 8(4): 685-92, 2015.
Xie YF, Jackson MF, Macdonald JF. Optogenetics and synaptic plasticity. Acta Pharmacol Sin, 34(11): 1381-5, 2013.
Xiong W, Jin X. Optogenetic field potential recording in cortical slices. J Neurosci Methods, 210(2): 119-24, 2012.
Yang C, Guo Z, Peng H, Xing G, Chen H, McClure MA, He B, He L, Du F, Xiong L, Mu Q. Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson's disease: A Meta-analysis. Brain Behav, 8(11): e01132, 2018.
Yeh A, Ho J, Tanabe Y, Neofytou E, Beygui R, Poon A. Wirelessly powering miniature implants for optogenetic stimulation. Appl Phys Lett, 103(16): 163701, 2013.
Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron, 71(1): 9-34, 2011.
Zalocusky K, Deisseroth K. Optogenetics in the behaving rat: integration of diverse new technologies in a vital animal model. Optogenetics, 2013: 1.
Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, De Lecea L, Deisseroth K. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc, 5(3): 439-56, 2010.
Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature, 446(7136): 633-9, 2007.
Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods, 8(9): 745-52, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw