進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2512201817085200
論文名稱(中文) 具休眠機制與最大功率點追蹤電路之光能獵能器設計
論文名稱(英文) Design of Photovoltaic Energy Harvester with Maximum Power Point Tracking Circuit and Sleep Mechanism
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 107
學期 1
出版年 107
研究生(中文) 顏健州
研究生(英文) Jian-Zhou Yan
電子信箱 unreal4218@gmail.com
學號 N26050198
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-魏嘉玲
口試委員-丁信文
口試委員-蔡建泓
口試委員-張順志
中文關鍵字 擾動觀察法  休眠模式  升壓型轉換器  光能獵能器 
英文關鍵字 Perturb and observe  Sleep mode  Boost converter  Photovoltaic energy harvester 
學科別分類
中文摘要 近年來隨著物聯網的蓬勃發展,其應用廣泛的存在於日常生活之中,小至個人感測器,大至城市設施,都需要無線傳感器來收集數據及傳輸數據,然而這些無線傳感器的能量來源是其需要面臨的一大問題。雖然可以使用電池來解決供電問題,然而後續所要面臨的,將是更換電池所需要的大量人力成本。做為替代的方案,獵能技術被用來取代電池,從環境中獵取能量並且提供給傳感器使用,可以有效延長無線傳感器的運作時間。本研究提出一個應用於獵取光能的升壓型直流-直流轉換器,其運用擾動觀察法使太陽能電池能工作在其最高功率點,並具備了休眠模式機制,可有效提升系統轉換效率。另外,為了在低功率下能有好的轉換效率,轉換器操作於非連續導通模式(DCM),其控制方法也將使用脈波頻率調變(PFM)進行控制。
此外,不管是能量來源的太陽能電池或提供無線傳感器能量的電源轉換器,其發展趨勢都必須走向微小化,因此本研究採用轉換效率較高的單晶矽太陽能電池做為能量來源,在同樣的能量下有較小的面積。本晶片使用台灣積體電路公司(TSMC)提供之0.18μm 1P6M Mixed-signal Standard CMOS 製程,晶片總面積為1018μm×931μm,並採用DIP 32 S/B進行封裝。所測得之最佳追蹤效率為99.3%,最佳轉換效率為95.3%,最佳總效率為94.7%。
英文摘要 In this thesis, a boost dc-dc converter for photovoltaic (PV) energy harvesting is proposed. A perturb and observe method is used to track the maximum power point of the PV cell, and the sleep mode is also included in the proposed converter to reduce the power consumption and to improve the conversion efficiency.
The proposed chip was fabricated by TSMC 0.18μm 1P6M mixed-signal standard CMOS process, and the chip area is 0.948 mm2. According to measurement results, the peak tracking efficiency is 99.3%, the peak conversion efficiency is 95.3%, and the peak total efficiency is 94.7%.
論文目次 第一章 簡介 1
1.1 研究動機 1
1.2 論文架構 2
第二章 太陽能電池基本介紹與最大功率點追蹤演算法 3
2.1 太陽能電池基本介紹 3
2.1.1 典型的太陽能電池種類 3
A. 矽太陽能電池 3
B. 化合物半導體太陽能電池 3
C. 光化學太陽能電池 4
D. 有機太陽能電池 4
2.1.2 操作光源的環境 5
2.2 最大功率點追蹤演算法 6
2.2.1 開路電壓法 7
2.2.2 短路電流法 8
2.2.3 擾動觀察法 9
A. 逐漸趨近式最大功率點追蹤演算法(SAR MPPT Algorithm) 10
B. 三點式擾動觀察法(3-Points Hill-Climbing Algorithm) 11
2.2.4 增量電導法 12
2.2.5 比較 14
第三章 系統架構與電路設計 15
3.1 系統架構簡介 15
3.1.1 升壓型轉換器 (Boost Converter) 16
3.1.2 太陽能電池模組 (PV Cell Module) 18
3.2 電路設計與功能介紹 20
3.2.1 電位選擇電路 (Supply Selector) 21
3.2.2 零電流偵測器 (Zero Current Detector) 23
3.2.3 恆定轉導偏壓電路 (Constant-gm Bias Circuit) 25
3.2.4 脈波頻率調變控制電路 (PFM Controller) 26
3.2.5 死區時間控制器 (Dead-time Controller) 28
3.2.6 反振盪電路 (Anti-ringing Circuit) 29
3.2.7 最大功率點追蹤控制器 (MPPT Controller) 30
A. 時脈產生器 (Clock Generator) 31
B. 電流感測器 (Current Sensor) 32
C. 最大功率點追蹤時脈 (MPPT Clock) 33
D. 數位輸出之類比乘法器 (Analog Multiplier with Digital Output) 34
E. 數位比較器 (Digital Comparator) 42
F. 追蹤電壓調整電路 (Tracking Voltage Tuning Circuit) 44
G. 休眠模式電路 (Sleep Mode Circuit) 47
3.3 系統運作模式 51
3.2.1 起始狀態 (Startup State) 51
3.2.1 閉迴路狀態 (Closed-loop State) 51
第四章 模擬結果與佈局考量 53
4.1 模擬結果 53
4.1.1 起始狀態模擬 53
4.1.2 閉迴路狀態模擬 55
A. 零電流偵測器 (Zero Current Detector) 55
B. 脈波頻率調變控制電路 (PFM Controller) 56
C. 死區時間控制器 (Dead-time Controller) 57
D. 最大功率點追蹤控制器 (MPPT Controller) 58
4.1.3 光源照度變動 60
4.1.4 模擬效率 61
A. 追蹤效率 (Tracking Efficiency) 61
B. 轉換效率 (Conversion Efficiency) 62
C. 系統總效率 (Total Efficiency) 63
4.2 佈局考量 64
4.3 打線圖 67
第五章 量測結果 70
5.1 量測環境與考量 70
5.2 量測結果 75
5.2.1 起始狀態 75
5.2.2 閉迴路狀態 76
A. 脈波頻率調變控制電路 (PFM Controller) 76
B. 零電流偵測器 (Zero Current Detector) 77
C. 最大功率點追蹤控制器 (MPPT Controller) 78
5.2.3 不同的休眠時間 79
5.2.4 光源照度變動 81
5.2.5 負載暫態 82
5.2.6 負載調節率(Load Regulation) 83
5.2.7 量測效率 84
A. 追蹤效率 (Tracking Efficiency) 84
B. 轉換效率 (Conversion Efficiency) 85
C. 系統總效率 (Total Efficiency) 86
D. 不同的休眠時間下的系統總效率 87
5.3規格比較表 88
第六章 結論與未來展望 90
參考文獻 91
參考文獻 [1] K. Ashton, ‘‘Internet of Things,’’ RFID J., Jun. 2009, [Online]. Available: http://www.rfidjournal.com/article/print/4986
[2]G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as building blocks for the internet of things”, IEEE Internet Comput., vol. 14, no. 1, pp. 44-51, 2010.
[3]R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting circuits for miniaturized photovoltaic cells ,” in Proc. IEEE Int. Symp. On Circuit and Syst., May 2011, pp. 309–312.
[4] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovoltaics Res. Appl., vol. 26, no. 7, pp427–436, Jul. 2018.
[5]W. S. Wang, T. O’Donnel, L. Ribetto, B. O’Flynn, M.Hayes, and C. O’Mathuna, “Energy harvesting embedded wireless sensor system for building environment applications,” in Int. Conf. Wireless VITAE, May 2009, pp. 36–41.
[6]T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
[7]S. Agarwal and M. Jamil, “A Comparison of Photovoltaic Maximum Power Point Techniques,” in Proc. 2012 Annu. IEEE, India conf., Dec. 2015, pp. 1–6.
[8]V. R. Scarpa , S. Buso , and G. Spiazzi, “ Low-complexity MPPT technique exploiting the PV module MPP locus characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.
[9]G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays,” Solar Cells, vol. 13, no. 2 pp. 185–195, Dec. 1984.
[10]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., Vol. 20, no. 4, pp. 963–973, Jul. 2005.
[11]H. Kim, S. Kim, C. K. Kwon, Y. J. Min, C. Kim, and S. W. Kim, “An energy-efficient fast maximum power point tracking circuit in an 800-μW photovoltaic energy harvester,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2927–2935, Jun. 2013.
[12]A. A. Abdelmoaty, M. Al-Shyoukh, Y.-C. Hsu, and A. A. Fayed, “A MPPT circuit with 25 μW power consumption and 99.7% tracking efficiency for PV systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 2, pp. 272–282, Feb. 2017.
[13]F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
[14]H. Kim, Y. Min, C. Jeong, K. Kim, C. Kim, and S. Kim, “A 1-mW solar-energy-harvesting circuit using an adaptive MPPT with a SAR and a counter,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 60, pp. 331–335, Jun. 2013.
[15]A. H. ALQahtani, M. S. Abuhamdeh, and Y. M. Alsmadi, “A Simplified and Comprehensive Approach to Characterize Photovoltaic System Performance,” in Proc. IEEE Energytech conf., May 2012, pp. 1–6.
[16]C. H. Huang, “Design of a Mixed-Ripple Adaptive On-Time Boost DC-DC Converter,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jan. 2017.
[17]P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252–1260, May 2012.
[18]Yi-Wen Wang, Chia-Ling Wei, “A Wide-Range Programmable Sinusoidal Frequency Synthesizer for Electrochemical Impedance Spectroscopy Measurement System,” M.S. thesis, M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul., 2012.
[19]H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive Peak-Inductor-Current Controlled PFM Boost Converter with a Near-Threshold Startup Voltage and High Efficiency,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1956–1965, Apr. 2015.
[20]T. W. Hus, “Design of Photovoltaic Energy Harvester with Fractional Open Circuit Voltage Based Maximum Power Point Tracking Circuit,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2016.
[21] Y. Qiu, C. V. Liempd, B. O. h. Veld, P. G Blanken, and C. V. Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers , Feb. 2011, pp. 118-120.
[22] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang and L. Siek, “A 400 nW Single–Inductor Dual-Input–Tri–Output DC–DC Buck–Boost Converter With Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2758-2772, Nov. 2015.
[23] R. D. Prabha and G. A. Rincón-Mora, “0.18-μm light-harvesting battery-assisted charger–supply CMOS system,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2950–2958, Apr. 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw