進階搜尋


下載電子全文  
系統識別號 U0026-2509201801465300
論文名稱(中文) 藉由多光子微製造技術來製作邊射型雷射二極體之光導引準直器
論文名稱(英文) Optical Devices for Collimating and Guiding Edge-Emitting Laser Diodes Via Multiphoton Microfabrication
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 1
出版年 107
研究生(中文) 謝碩哲
研究生(英文) Shuo-Je Hsieh
學號 N96054243
學位類別 碩士
語文別 英文
論文頁數 54頁
口試委員 指導教授-陳顯禎
口試委員-藍宇彬
口試委員-林俊佑
口試委員-張家源
中文關鍵字 飛秒雷射  多光子激發  光微影製程  三維微結構  三甲基丙烷三丙烯酸酯  邊設型雷射 
英文關鍵字 femtosecond laser  three-dimensional microstructures  trimethylolpropane triacrylate  two-photon polymerization  edge-emitting laser  vertical-cavity surface-emitting laser 
學科別分類
中文摘要 近年來,藉由多光子激發技術 (multiphoton excitation, MPE) 所製造的眾多微製程光學元件的應用在半導體領域獲得了極大的進步。但是對於具有準直與導引功能,並直接製程於半導體雷射的光學元件組合並沒有太多的實驗和研究。在此論文中,三甲基丙烷三丙烯酸酯 (Trimethylolpropane triacrylate, TMPTA) 的三維 (3 dimension, 3D) 結構是藉由多光子激發技術的聚合效應來製程。因為多光子激發技術因吸收範圍侷限於極小體積之中,因此相比於傳統的單光子激發 (single photon excitation),多光子激發擁有更佳的切片特性,所以可製造出高空間解析度的任意形狀結構並精確的置於雷射二極體上。在製程的過程中,使用製程溶液包含了當為反應性單體 (reactive monomer) 的三甲基丙烷三丙烯酸酯,孟加拉玫瑰紅素(rose Bengal, RB) 為光活化劑 (photoinitiator),也稱為光敏劑。而三乙胺(Triethylamine, TEA) 為共同起始劑 (co-initiator),在製程過程中,藉由飛秒雷射 (femtosecond laser),光活化劑被雙光子效應 (two-photon absorption, TPA) 所激發。而自由基在過程中產生,並和三甲基丙烷三丙烯酸酯溶合產生聚合物鏈。在雷射加工方面,為了避免雷射光所造成的熱效應來破壞結構,並使最大化雷射之效率,所以雷射波長會選擇可使玫瑰紅素產生更佳的雙光子吸收波段。同時調控最佳的雷射製程參數來製作二維與三維的微結構。在製程完成後透過一般光學顯微鏡或是雙光子激發螢光影像和掃描式電子顯微鏡來觀察和檢視結構之形態。
此論文之目的是在於使用雙光子激發,在邊設型雷射二極體(edge-emitting laser, EEL) 表面上直接製程具有準直和導引的光學元件之組合。用於導引平行於地面邊設型雷射產生的雷射光,與準直具有發散角之雷射。
英文摘要 As of currently, many optical application in microstructures are being made via multiphoton excitation (MPE) attached on semiconductors. However, there is a lack of research regarding direct fabrication on semiconductor lasers with combination of optical structures that consists of both the abilities to guide and collimate the laser beam. In this thesis, MPE technique is utilized to create three dimensional (3D) structures via polymerization in trimethylolpropane triacrylate (TMPTA) solution. Due to the fact that the precision of MPE is in focal volume, the sectioning effect is significantly better than single-photon excitation. With this technique, the high spatial resolution of the 3D waveguide devices has the ability to collimate and redirect laser beam can be directly fabricated on specific location of laser diodes. The main mechanism of the multiphoton-induced fabrication technique was done in TMPTA solutions, the solution contains TMPTA as the reactive monomer, rose Bengal (RB) as the photoactivator, and trimethylamine (TEA) as co-initiator. In this process, the photoactivator is activated through two-photon absorption (TPA) of femtosecond laser to produce the two-photon polymerization (TPP). In addition, femtosecond laser can generate enough photon energy density within focal volume. Hence, the free radicals are produced from the reaction and the energy is then transferred to the monomers. After having the energy transferred, the TMPTA monomers attach with each other through covalent bonding and form a precise, delicate, transparent and rigid structure on selected area in micron-scale that standard fabrication methods could find difficult to work with.
The objective of this thesis is to use TPP to fabricate a combination of photonics devices directly on edge-emitting laser diode (EEL). Through guiding the laser in the direction similar to vertical-cavity surface-emitting laser diode (VCSEL) then collimate the divergent laser beam by a lens. VCSEL is the trend of laser diode technology since it is economical to manufacture, easier to couple with optical fiber. And the circular-like laser beam from VCSEL can be collimated more efficiently. However, due to the fact that VCSEL has a short cavity, it is difficult to generate higher power output. On the other hand, EEL have long cavity to generate stronger laser. By attaching the optical devices to EEL, this semiconductor laser will then be able to have much greater value of power output and the direction is relatively close to VCSEL for better versatility and flexibility in potential electric device applications.
In conclusion, this thesis has concluded that it is possible to have direct fabrication through MPE to construct optical devices on specific location on a semiconductor laser with designate functions and properties. Though there are some defects exist, it could be improved with adjustment on design and process, and the future potential continues.
論文目次 Abstract II
摘要 IV
Acknowledgement VI
Table of Contents VII
List of Figures IX
List of Abbreviations XII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 2
1.3 Motivation and goal 3
1.4 Outline 3
Chapter 2 Ultrafast Laser System and Multiphoton Microfabrication Mechanism 5
2.1 Optical setup and Ultrafast laser system 5
2.1.1 Ultrafast laser system 6
2.1.2 Optical setup and electronic control system 6
2.1.3 3D freeform modeling and design-transformation 11
2.2 Multiphoton microfabrication mechanism 12
2.2.1 Nonlinear optical effects 12
2.2.2 Multiphoton absorption and excitation 13
2.1.3 Multiphoton-induced photochemistry 16
Chapter 3 Three-dimensional Microstructures of Polymers and Proteins 21
3.1 Fabrication materials 21
3.2 Sample preparation 22
3.3 Fabrication process 25
3.4 3D polymer and protein microstructures 29
3.4.1 BSA microstructures 29
3.4.2 NOA81 microstructures 30
3.4.3 TMPTA microstructures 30
Chapter 4 TMPTA optical devices fabricated on semiconductor laser diode 32
4.1 Semiconductor laser diodes and laser path 32
4.2 Optical devices design and 3D transformation 35
4.3 Fabrication outcome observation 40
4.4 Direct fabrication on EEL diode and a noval software program on z-coordinate detection. 42
Chapter 5 Conclusions and Future Work 47
References 49
參考文獻 [1] C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999)
[2] J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041-1070 (1996).
[3] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000)
[4] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[5] P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[6] M. Göppert-Mayer, “Elementary processes with two quantum transitions,” Ann. Phys. 18, 466-479 (2009).
[7] W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229-231 (1961).
[8] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997).
[9] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
[10] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
[11] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys. A: Mater. Sci. Process 73, 561-566 (2001).
[12] T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization,” Adv. Funct. Mater. 12, 611-614 (2002).
[13] C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[14] D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics 11(3), 155–168 (1997).
[15] R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[16] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27(9), 1742–1751 (1988).
[17] H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[18] R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, V. Schmidt, N. Pucher, R. Liska, and W. Kern, “3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups,” Opt. Mater. Express 4(3), 486 (2014).
[19] Nikolay N. Elkin, Anatoly P. Napartovich, Vera N. Troshchieva, Dmitry V. Vysotsky, Tae-Woo Lee, Susan C. Hagness, Nam-Heon Kim, Ling Bao, and L. J. Mawst, "Antiresonant Reflecting Optical Waveguide-Type Vertical-Cavity Surface Emitting Lasers: Comparison of Full-Vector Finite-Difference Time-Domain and 3-D Bidirectional Beam Propagation Methods," J. Lightwave Technol. 24, 1834- (2006)
[20] D. G. Deppe, D. L. Huffaker, Z. Zou, and S. Csutak, "Quantum Dots for GaAs-Based Long Wavelength Edge-Emitting and Vertical-Cavity Surface-Emitting Lasers," OSA Technical Digest Series. (1999)
[21] Benjamin P. Yonkee, Erin C. Young, Changmin Lee, John T. Leonard, Steven P. DenBaars, James S. Speck, and Shuji Nakamura, "Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact," Opt. Express 24, 7816-7822 (2016)
[22] Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20, 914-919 (2008).
[23] A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, and H. Misawa, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
[24] P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438-1441 (2000).
[25] B. M. Gillette, J. A. Jensen, B. Tang, G. J. Yang, A. Bazargan-Lari, M. Zhong, and S. K. Sia, “In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices,” Nat. Mater. 7, 636-640 (2008).
[26] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M.-M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini, “Three-dimensional tissue culture based on magnetic cell levitation,” Nat. Nanotechnol. 5, 291-296 (2010).
[27] A. Grzybowski, K. Pietrzak, M. Göppert-Mayer, “Two-photon effect on dermatology” Clinics in Dermatology. 2013;31:221–225
[28] S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, and S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283-288 (2013).
[29] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley, Hoboken, NJ (2007).
[30] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119 (1961).
[31] R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, Burlington, MA (2008).
[32] B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, New York, NY (2008).
[33] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[34] A. Gleizes, J. J. Gonzalez, and P. Freton, “Thermal plasma modelling,” J. Phys. D: Appl. Phys. 38, R153-R183 (2005).
[35] F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors 14, 19402-19440 (2014).
[36] W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18, 27550-27559 (2010).
[37] C. I. Richards, J.-C. Hsiang, and R. M. Dickson, “Synchronously amplified fluorescence image recovery (SAFIRe),” J. Phys. Chem. B 114, 660-665 (2010).
[38] M. Szilvási-Nagy and Gy. Mátyási, “Analysis of STL files,” Math. Comput. Model. 38, 945-960 (2003).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw