進階搜尋


 
系統識別號 U0026-2509201215035800
論文名稱(中文) 低能量雷射對於幹細胞生長、骨分化及抗發炎反應之探討
論文名稱(英文) Low Power Laser Irradiation on the Proliferation, Osteo-Differentiation, and Anti-Inflammation of Stem Cells
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 101
學期 1
出版年 101
研究生(中文) 吳俊毅
研究生(英文) Jyun-Yi Wu
學號 p88961194
學位類別 博士
語文別 英文
論文頁數 112頁
口試委員 指導教授-葉明龍
共同指導教授-陳嘉炘
共同指導教授-王彥雄
口試委員-張志涵
口試委員-林真福
口試委員-郭榮富
中文關鍵字 低能量雷射  骨髓幹細胞  脂肪幹細胞  細胞增生  骨分化  大鼠頭蓋骨缺損模型  發炎反應 
英文關鍵字 Low power laser irradiation  Bone marrow stem cells  Adipose-derived stem cells  Cell proliferation  Osteogenic differentiation  Rat calvarial bone defect model  inflammation 
學科別分類
中文摘要 低能量雷射現今已被廣泛的應用於各種臨床症狀的治療,包括傷口癒合、疼痛減緩、抗發炎等等。此外,幹細胞具有自我更新及多向分化的特性,使其具有修復各種受損器官或組織之潛在應用性。骨質疏鬆症是常見的骨骼肌肉系統疾病,嚴重者常會引起骨折的現象,藉由幹細胞具備的骨分化能力,可以提供一種具發展潛能的治療方式。伴隨幹細胞治療或是幹細胞移植,可能會發生病原體感染而引起併發症,間接導致幹細胞治療的效果降低。因此,本研究第一部分探討低能量雷射對幹細胞基礎生長狀況之影響,進而從細胞實驗與動物實驗的角度分別探討其對幹細胞骨分化之影響與機制。第二部分則探討低能量雷射對LPS所引發之幹細胞發炎作用的抑制效果之分子機制。
本研究結果顯示,低能量雷射照射不會對幹細胞產生毒性。同時,低能量雷射在能量密度4 J/cm2時會顯著的促進幹細胞增生。在骨分化方面,隨著雷射照射能量的增加有促進骨分化的能力。同時,低能量雷射也會促進骨分化相關基因的表現並減少蝕骨作用相關因子的表現。藉由IGF1與BMP2的抗體所進行的實驗也顯示,低能量雷射可能藉由調節IGF1或BMP2訊息傳遞路徑去調節幹細胞的生長和分化。此外,根據動物實驗的結果可知在大鼠頭蓋骨缺損處之PLGA支架無論是否有幹細胞的置放,LPLI照射皆可增加骨頭癒合的程度。而幹細胞與LPLI共同處理的組別則具有最佳的治癒效果。另一方面,幹細胞會表現Toll-like receptors,並且藉由LPS的刺激會顯著地引起發炎相關基因(Cox-2, Il-1β, IL-6, and IL-8)的表現,¬若同時處理能量密度8 J/cm2的低能量雷射,會對發炎相關基因的表現有最佳的抑制效果。本研究也發現,低能量雷射會降低磷酸化IκBα以及磷酸化NF-κB的表現,同時減少轉錄因子NF-κB轉位的現象以及轉錄的活性。此外,LPLI透過提升細胞內之cAMP濃度而抑制NF-κB之轉錄活性,經由SQ22536 (cAMP抑制物)處理過後,LPLI所引起之抗發炎作用將被消除,因此可知LPLI之抗發炎效果是透過cAMP之調控所造成。
本研究說明了低能量雷射可以應用在促進幹細胞的生長與骨分化,同時抑制LPS所引起的發炎現象。此結果可以提供一個更進一步的研究觀點關於應用低能量雷射於以幹細胞治療為基礎的再生醫學,並且提供一個在幹細胞治療過程中所會產生的感染現象的治療方式。而傳統探討低能量雷射的機制多以細胞生物觀點進行討論,因此,未來研究將進一步假設雷射光作用於細胞表面時為一光子衝擊細胞的微小力量作用,進而探討幹細胞力學特性的改變。
英文摘要 Low power laser irradiation (LPLI) has been wildly applied in treating a variety of clinical diseases, such as wound healing, pain relief, and anti-inflammatory reaction. In addition, stem cells have the properties of self-renewal and multi-differentiation, which make the stem cells possess the potential application in repair the damage or diseased tissues and organs. Osteoporosis is a common skeletal disorder to induce frequent bone fracture. Based on the ability of osteogenic differentiation of stem cells, it may provide a new approach of the treatment for osteoporosis and osteoporosis facture. The microbial infection is a common complication during the stem cell based therapy or transplantation which restricts the applicability of stem cell therapy. The purposes of this study are to investigate the effect of low power laser on the proliferation of stem cells, then, study the mechanism of LPLI stimulates the osteogenic differentiation of stem cells from the in vitro and in vivo experiments. Finally, the effect of LPLI on the LPS-induced inflammation of stem cells was investigated.
The results in this study found that no cytotoxic effects were observed on irradiated stem cells. LPLI significantly promoted proliferation of stem cells at 4 J/cm2 and enhanced osteogenic differentiation in a dose-dependent manner. Expression of the osteogenic markers was significantly increased by LPLI. Contrarily, LPLI decreased the expression of osteoclastogenic markers (RANKL/OPG). The antibodies neutralization experiments indicated that physiological effects of LPLI may regulate IGF1 and BMP2 signaling pathways to control cell proliferation and/or osteogenic differentiation. Based on the rat calvarial bone defect experiment, LPLI displayed higher amounts of newly generated bone on both stem cell loaded groups and non-stem cells loaded groups. LPLI plus stem cells group showed the best healing outcome in this study. hADSCs expressed the TLR1, 2, 3, 4, and 6, and significantly induced the production of pro-inflammatory mediators (Cox-2, Il-1β, IL-6, and IL-8). LPLI remarkably inhibited these gene expressions with the optimal dose of 8 J/cm2, and decreased the protein level of phosphor-IκBα and phospho-NF-κB. The amount of nuclear translocation and transcriptional activity of NF-κB was decreased by LPLI. The inhibitory effect stimulated by LPLI might act via increasing the intracellular level of cAMP, resulting in down-regulation of NF-κB transcriptional activity.
The present study suggests that LPLI promotes the proliferation and osteogenic differentiation of stem cells. LPLI also suppresses the inflammatory response of LPS-induced inflammation of stem cells. These results may provide insight for further investigations of the application of LPLI to stem cells in regenerative medicine and the potential for anti-inflammatory therapy followed by stem cell therapy. In addition, one hypothesis has been mentioned that LPLI can act as a photo-mechanical stimulation on the cells. Therefore, the mechanical properties of stem cells followed by LPLI will be discussed in the future study.
論文目次 中文摘要 I
Abstract III
致謝 V
Table of contents VII
List of tables X
List of figures XI
Glossary of Acronyms XVII
Chapter 1: Introduction 1
1.1 Exordium 1
1.2 Introduction of lasers 2
1.2.1 The development and applications of low power laser irradiation 2
1.2.2 The physiological role and possible mechanism induced by LPLI 4
1.3 stem cells 6
1.3.1 Source of stem cells 6
1.3.2 Bone marrow mesenchymal stem cells 8
1.3.3 Adipose derived stem cells 8
1.4 Bone tissue 10
1.4.1 The function and structure of bone 10
1.4.2 Bone remodeling cycle 11
1.4.3 Osteoporosis 13
1.4.4 Bone healing process 14
1.5 Immunology 16
1.5.1 Innate immune response 16
1.5.2 Toll-like receptors 17
1.5.3 TLRs-mediated MyD88-independent signaling pathway 19
1.6 Purposes 21
1.6.1 LPLI on the proliferation and osteogenic differentiation of mBMSCs 21
1.6.2 LPLI on the inhibitory effect of LPS-induced inflammation of hADSCs 21
Chapter 2: Materials and methods 23
2.1 Flowchart 23
2.2 Laser apparatus 24
2.3 Cell culture 26
2.3.1 D1 mouse bone marrow stem cells 26
2.3.2 Human adipose derived stem cells 27
2.3.3U937 human leukemic monocyte lymphoma cell 27
2.3.4 Osteogenic differentiation 28
2.4 Animals 28
2.5 Cell cytotoxicity 28
2.5.1 Cell morphology 28
2.5.2 Lactate dehydrogenase (LDH) assay 29
2.6 Cell viability 30
2.6.1 Cells counting 30
2.6.2 MTT assay 30
2.6.3 MTS assay 31
2.7 Functional assay of osteogenic differentiation 31
2.7.1 Alkaline phosphatase (ALP) activity assay 31
2.7.2 Alizarin Red S (ARS) stain 33
2.8 Real-time reverse transcription-polymerase chain reaction (RT-PCR) 34
2.8.1 Total RNA extraction 34
2.8.2 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 35
2.9 Enzyme-linked immunosorbent assay (ELISA) 38
2.9.1 ELISA for IGF1 38
2.9.2 ELISA for BMP2 39
2.9.3 ELISA for IL-6 and IL-8 39
2.9.4 ELISA for Cyclic AMP 40
2.10 Neutralization 41
2.11 Fabrication of PLGA scaffolds 41
2.12 Cell culture on PLGA scaffolds 42
2.13 Animal procedures (critical-sized calvarial defect) 43
2.14 Micro-CT analysis 44
2.15 LPS treatment 45
2.16 Western blotting 45
2.16.1 Solution preparation 45
2.16.2 Protein sample preparation and concentration measurement 46
2.16.3 Gel electrophoresis 46
2.16.4 Electrotransfer 48
2.16.5 Immunoblotting 48
2.17 NFκB activity assay 49
2.17.1 Plasmid DNA purification 49
2.17.2 Dual-luciferases reporter gene assay 50
2.18 Immunofluorescence 51
2.19 Statistical analysis 52
Chapter 3: Results 53
3.1 The cytotoxicity and viability of LPLI on stem cells 53
3.1.1 Cell cytotoxicity 53
3.1.2 Effect of LPLI on cell viability and the Laser parameters 55
3.2 LPLI on the osteogenic differentiation of mBMSCs 60
3.2.1 LPLI enhances osteogenic differentiation by functional assay 60
3.2.2 LPLI regulates osteogenic genes expressions 63
3.2.3 The biophysiological effects of LPLI 65
3.3 Effect of LPLI on the in vivo bone regeneration 70
3.3.1 hADSCs remained in PLGA scaffold 70
3.3.2 LPLI modestly promotes bone repair by micro-CT analysis 71
3.4 The anti-inflammatory effect of LPLI on hADSCs 76
3.4.1 Determination the TLRs expression pattern and activity in hADSCs 76
3.4.2 LPLI decreased LPS-induced pro-inflammatory gene expression 78
3.4.3 LPLI downregulates LPS-stimulated NF-κB activation 83
3.4.4 LPLI modulated NF-κB via the cAMP signaling pathway 87
Chapter 4: Discussion and conclusion 90
4.1 LPLI on the proliferation and osteogenic differentiation of mBMSCs 90
4.2 LPLI on the bone repair in rat calvarial defect model 94
4.3 LPLI on the inhibitory effect of LPS-induced inflammation of hADSCs 97
Chapter 5: Future work 101
References 103
參考文獻 1. Basford JR (1989) Low-energy laser therapy: controversies and new research findings. Lasers in surgery and medicine 9(1):1-5.
2. Wallace SJ, Gross F, & Tjon JA (1995) Low-energy theorem for scalar and vector interactions of a composite spin-1/2 system. Physical review letters 74(2):228-230.
3. Mester E, Szende B, & Gartner P (1968) [The effect of laser beams on the growth of hair in mice]. Radiobiologia, radiotherapia 9(5):621-626.
4. Gam AN, Thorsen H, & Lonnberg F (1993) The effect of low-level laser therapy on musculoskeletal pain: a meta-analysis. Pain 52(1):63-66.
5. Bjordal JM, et al. (2011) A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer 19(8):1069-1077.
6. Gouvea de Lima A, et al. (2012) Oral mucositis prevention by low-level laser therapy in head-and-neck cancer patients undergoing concurrent chemoradiotherapy: a phase III randomized study. International journal of radiation oncology, biology, physics 82(1):270-275.
7. Vladimirov YA, Osipov AN, & Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry. Biokhimiia 69(1):81-90.
8. Gal P, et al. (2009) Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats. Lasers in medical science 24(4):539-547.
9. Arany PR, et al. (2007) Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 15(6):866-874.
10. Hawkins DH & Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers in surgery and medicine 38(1):74-83.
11. Ilich-Stoianovich O, Nasonov EL, & Balabanova RM (2000) [Effects of low-intensity infrared impulse laser therapy on inflammation activity markers in patients with rheumatoid arthritis]. Terapevticheskii arkhiv 72(5):32-34.
12. Oliveira P, et al. (2011) Comparison of the effects of low-level laser therapy and low-intensity pulsed ultrasound on the process of bone repair in the rat tibia. Rev Bras Fisioter 15(3):200-205.
13. Pires-Oliveira DA, Oliveira RF, Amadei SU, Pacheco-Soares C, & Rocha RF (2010) Laser 904 nm action on bone repair in rats with osteoporosis. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 21(12):2109-2114.
14. Seco J, Kovacs FM, & Urrutia G (2011) The efficacy, safety, effectiveness, and cost-effectiveness of ultrasound and shock wave therapies for low back pain: a systematic review. The spine journal : official journal of the North American Spine Society 11(10):966-977.
15. Mandic M & Rancie N (2011) [Low power laser in the treatment of the acute low back pain]. Vojnosanitetski pregled. Military-medical and pharmaceutical review 68(1):57-61.
16. Fiore P, et al. (2011) Short-term effects of high-intensity laser therapy versus ultrasound therapy in the treatment of low back pain: a randomized controlled trial. European journal of physical and rehabilitation medicine 47(3):367-373.
17. Walsh LJ (1997) The current status of low level laser therapy in dentistry. Part 1. Soft tissue applications. Australian dental journal 42(4):247-254.
18. Zhang LX, Tong XJ, Yuan XH, Sun XH, & Jia H (2010) Effects of 660-nm gallium-aluminum-arsenide low-energy laser on nerve regeneration after acellular nerve allograft in rats. Synapse 64(2):152-160.
19. Schindl A, Merwald H, Schindl L, Kaun C, & Wojta J (2003) Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. The British journal of dermatology 148(2):334-336.
20. Konig K (2000) Multiphoton microscopy in life sciences. Journal of microscopy 200(Pt 2):83-104.
21. Gao X & Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of biomedical science 16:4.
22. Karu T (1989) Laser biostimulation: a photobiological phenomenon. Journal of photochemistry and photobiology. B, Biology 3(4):638-640.
23. Karu T, Pyatibrat L, & Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. Journal of photochemistry and photobiology. B, Biology 27(3):219-223.
24. Senior AE (1988) ATP synthesis by oxidative phosphorylation. Physiological reviews 68(1):177-231.
25. Lavi R, et al. (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. The Journal of biological chemistry 278(42):40917-40922.
26. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of photochemistry and photobiology. B, Biology 49(1):1-17.
27. Thomson JA, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145-1147.
28. Gearhart J (1998) New potential for human embryonic stem cells. Science 282(5391):1061-1062.
29. Mooney DJ & Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell stem cell 2(3):205-213.
30. Mizuno H (2009) Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. Journal of Nihon Medical School = Nihon Ika Daigaku zasshi 76(2):56-66.
31. Minguell JJ, Erices A, & Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507-520.
32. Pittenger MF, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143-147.
33. Zhu Y, et al. (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell biochemistry and function 26(6):664-675.
34. Bunnell BA, Flaat M, Gagliardi C, Patel B, & Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115-120.
35. Winter A, et al. (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis and rheumatism 48(2):418-429.
36. Rangappa S, Fen C, Lee EH, Bongso A, & Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. The Annals of thoracic surgery 75(3):775-779.
37. Sen A, et al. (2001) Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. Journal of cellular biochemistry 81(2):312-319.
38. Halvorsen YD, et al. (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue engineering 7(6):729-741.
39. Zuk PA, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering 7(2):211-228.
40. Gronthos S, et al. (2001) Surface protein characterization of human adipose tissue-derived stromal cells. Journal of cellular physiology 189(1):54-63.
41. Khosla S, Westendorf JJ, & Modder UI (2010) Concise review: Insights from normal bone remodeling and stem cell-based therapies for bone repair. Stem Cells 28(12):2124-2128.
42. Hadjidakis DJ & Androulakis, II (2006) Bone remodeling. Annals of the New York Academy of Sciences 1092:385-396.
43. Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clinical chemistry 45(8 Pt 2):1353-1358.
44. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. The Anatomical record 224(2):317-324.
45. Boyde A, Ali NN, & Jones SJ (1985) Optical and scanning electron microscopy in the single osteoclast resorption assay. Scanning electron microscopy (Pt 3):1259-1271.
46. Totosy de Zepetnek JO, Giangregorio LM, & Craven BC (2009) Whole-body vibration as potential intervention for people with low bone mineral density and osteoporosis: a review. Journal of rehabilitation research and development 46(4):529-542.
47. Riggs BL & Melton LJ, 3rd (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17(5 Suppl):505S-511S.
48. Pietschmann P, Rauner M, Sipos W, & Kerschan-Schindl K (2009) Osteoporosis: an age-related and gender-specific disease--a mini-review. Gerontology 55(1):3-12.
49. Mehler PS & MacKenzie TD (2009) Treatment of osteopenia and osteoporosis in anorexia nervosa: a systematic review of the literature. The International journal of eating disorders 42(3):195-201.
50. Kalfas IH (2001) Principles of bone healing. Neurosurgical focus 10(4):E1.
51. Burchardt H & Enneking WF (1978) Transplantation of bone. The Surgical clinics of North America 58(2):403-427.
52. DePalma AF, Rothman RH, Lewinnek GE, & Canale ST (1972) Anterior interbody fusion for severe cervical disc degeneration. Surgery, gynecology & obstetrics 134(5):755-758.
53. Radi ZA (2009) Pathophysiology of cyclooxygenase inhibition in animal models. Toxicologic pathology 37(1):34-46.
54. Akira S, Yamamoto M, & Takeda K (2003) Role of adapters in Toll-like receptor signalling. Biochemical Society transactions 31(Pt 3):637-642.
55. Schnare M, et al. (2001) Toll-like receptors control activation of adaptive immune responses. Nature immunology 2(10):947-950.
56. Janeway CA, Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1:1-13.
57. Ishii KJ, Koyama S, Nakagawa A, Coban C, & Akira S (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell host & microbe 3(6):352-363.
58. Akira S, Uematsu S, & Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783-801.
59. Iwasaki A & Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nature immunology 5(10):987-995.
60. Chi H & Flavell RA (2008) Innate recognition of non-self nucleic acids. Genome biology 9(3):211.
61. Doyle SL & O'Neill LA (2006) Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochemical pharmacology 72(9):1102-1113.
62. O'Neill LA & Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature reviews. Immunology 7(5):353-364.
63. Horng T, Barton GM, & Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nature immunology 2(9):835-841.
64. Lu YC, Yeh WC, & Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145-151.
65. Uematsu S & Akira S (2006) Toll-like receptors and innate immunity. J Mol Med (Berl) 84(9):712-725.
66. Akira S & Takeda K (2004) Toll-like receptor signalling. Nature reviews. Immunology 4(7):499-511.
67. Pitha PM (2004) Unexpected similarities in cellular responses to bacterial and viral invasion. Proceedings of the National Academy of Sciences of the United States of America 101(3):695-696.
68. Barushka O, Yaakobi T, & Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16(1):47-55.
69. Ninomiya T, et al. (2003) High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. Journal of bone and mineral metabolism 21(2):67-73.
70. Pretel H, Lizarelli RF, & Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers in surgery and medicine 39(10):788-796.
71. Pires Oliveira DA, de Oliveira RF, Zangaro RA, & Soares CP (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomedicine and laser surgery 26(4):401-404.
72. Arisu HD, Turkoz E, & Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers in medical science 21(3):175-180.
73. Stein E, et al. (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wiener klinische Wochenschrift 120(3-4):112-117.
74. Bortone F, et al. (2008) Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. International immunopharmacology 8(2):206-210.
75. Aimbire F, et al. (2008) Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31(3):189-197.
76. Sakurai Y, Yamaguchi M, & Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. European journal of oral sciences 108(1):29-34.
77. Chen CH, Ho ML, Chang JK, Hung SH, & Wang GJ (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 16(12):2039-2045.
78. Dahir GA, et al. (2000) Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clinical orthopaedics and related research (379 Suppl):S134-145.
79. Wang YH, et al. (2009) Microporation is a valuable transfection method for gene expression in human adipose tissue-derived stem cells. Molecular therapy : the journal of the American Society of Gene Therapy 17(2):302-308.
80. Wu SC, Chang JK, Wang CK, Wang GJ, & Ho ML (2010) Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31(4):631-640.
81. Xiong F, et al. (2007) [Expression and role of toll-like receptors in U937 cells]. Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = Journal of experimental hematology / Chinese Association of Pathophysiology 15(3):449-453.
82. Sen R & Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5):705-716.
83. de Lima FM, et al. (2011) Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers in medical science 26(3):389-400.
84. Coombe AR, et al. (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4(1):3-14.
85. Mvula B, Mathope T, Moore T, & Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers in medical science 23(3):277-282.
86. Hou JF, et al. (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers in surgery and medicine 40(10):726-733.
87. Ozawa Y, Shimizu N, Kariya G, & Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22(4):347-354.
88. Taniguchi D, et al. (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41(3):232-239.
89. Eduardo Fde P, et al. (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433-438.
90. Horvat-Karajz K, et al. (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers in surgery and medicine 41(6):463-469.
91. Xu M, et al. (2009) Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 27(2):309-315.
92. Soares CP, Oliveira DAAP, de Oliveira RF, & Zangaro RA (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26(4):401-404.
93. Fukuhara E, Goto T, Matayoshi T, Kobayashi S, & Takahashi T (2006) Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial osteoblasts. Calcif Tissue Int 79(6):443-450.
94. Khadra M, Lyngstadaas SP, Haanaes HR, & Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503-3509.
95. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, & Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers in surgery and medicine 41(4):291-297.
96. Hamajima S, et al. (2003) Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci 18(2):78-82.
97. Stein A, Benayahu D, Maltz L, & Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161-166.
98. Suda T, et al. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20(3):345-357.
99. Baron W, Metz B, Bansal R, Hoekstra D, & de Vries H (2000) PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Mol Cell Neurosci 15(3):314-329.
100. Wildemann B, et al. (2003) Cell proliferation and differentiation during fracture healing are influenced by locally applied IGF-I and TGF-beta1: comparison of two proliferation markers, PCNA and BrdU. J Biomed Mater Res B Appl Biomater 65(1):150-156.
101. Huang X & Lee C (2003) Regulation of stromal proliferation, growth arrest, differentiation and apoptosis in benign prostatic hyperplasia by TGF-beta. Front Biosci 8:s740-749.
102. Cen S, Zhang J, Huang F, Yang Z, & Xie H (2008) [Effect of IGF-1 on proliferation and differentiation of primary human embryonic myoblasts]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22(1):84-87.
103. Jin DM, Chen LL, & Yan J (2006) [Effects of IGF-I and BMP-2 combined application on promoting proliferation, differentiation and calcification of MC 3T3-E1 and NIH 3T3 cells]. Zhejiang Da Xue Xue Bao Yi Xue Ban 35(1):55-63.
104. Moore NM, Lin NJ, Gallant ND, & Becker ML (2011) Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 7(5):2091-2100.
105. Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, & Haanaes HR (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15(3):325-332.
106. Wang CZ, et al. (2010) The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Biomaterials 31(33):8674-8683.
107. David R, Nissan M, Cohen I, & Soudry M (1996) Effect of low-power He-Ne laser on fracture healing in rats. Lasers in surgery and medicine 19(4):458-464.
108. Carvalho Pde T, et al. (2006) Effect of 650 nm low-power laser on bone morphogenetic protein in bone defects induced in rat femors. Acta cirurgica brasileira / Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia 21 Suppl 4:63-68.
109. Nissan J, Assif D, Gross MD, Yaffe A, & Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. Journal of oral rehabilitation 33(8):619-924.
110. da Silva RV & Camilli JA (2006) Repair of bone defects treated with autogenous bone graft and low-power laser. The Journal of craniofacial surgery 17(2):297-301.
111. Rosa AP, et al. (2012) Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair. Lasers in medical science 27(5):971-977.
112. Hwa Cho H, Bae YC, & Jung JS (2006) Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells 24(12):2744-2752.
113. Lombardo E, et al. (2009) Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 15(7):1579-1589.
114. Correa F, et al. (2007) Low-level laser therapy (GaAs lambda = 904 nm) reduces inflammatory cell migration in mice with lipopolysaccharide-induced peritonitis. Photomed Laser Surg 25(4):245-249.
115. Pires D, et al. (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26(1):85-94.
116. Boschi ES, et al. (2008) Anti-Inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40(7):500-508.
117. Aimbire F, et al. (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol 8(4):603-605.
118. Rizzi CF, et al. (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38(7):704-713.
119. Zungu IL, Hawkins Evans D, & Abrahamse H (2009) Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation--an in vitro study. Photochem Photobiol 85(4):987-996.
120. Karu TI, Lobko VV, Lukpanova GG, Parkhomenko IM, & Chirkov I (1985) [Effect of irradiation with monochromatic visible light on the cAMP content in mammalian cells]. Dokl Akad Nauk SSSR 281(5):1242-1244.
121. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90-113.
122. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, & Ghosh S (1997) The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89(3):413-424.
123. Parry GC & Mackman N (1997) Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol 159(11):5450-5456.
124. Gerlo S, et al. (2011) Cyclic AMP: a selective modulator of NF-kappaB action. Cell Mol Life Sci 68(23):3823-3841.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-10-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-10-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw