進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202021382000
論文名稱(中文) 透過氧化腐蝕/還原反應策略控制金銀奈米材料組成結構成為具有表面增強拉曼散射與催化的功能性材料
論文名稱(英文) Facile oxidation and reduction processes to manipulate the nanocomposites of AuAg structure for promoting surface-enhanced Raman scattering and catalysis performance
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生(中文) 張竣然
研究生(英文) Chun-In Cheung
學號 L36075017
學位類別 碩士
語文別 英文
論文頁數 94頁
口試委員 指導教授-孫亦文
指導教授-黃志嘉
口試委員-林宗宏
口試委員-廖美儀
中文關鍵字 表面增強拉曼散射  抗菌  金銀  納米  催化  穩定性 
英文關鍵字 AuAg hollow nanoparticles  SERS  catalyst  photocatalyst  PSMA  dye 
學科別分類
中文摘要 本研究利用雙氧水(H2O2)/磷酸鹽緩衝生理鹽水(PBS)/聚苯乙烯-alt-馬來酸)鈉鹽(PSMA)水溶液在80oC下對金銀孔洞奈米粒子進行腐蝕。腐蝕過程中會使金銀孔洞奈米粒子中的銀原子氧化成銀離子,並擴散至奈米粒子表面被PSMA捕捉固定,並透過還原劑使表面的銀離子還原成銀原子,以達到增強SERS效果。其中,我們使用5種不同的還原劑,發現N2H4•H2O所形成的結構有更好的SERS效果。另外,所形成的氧化態金銀孔洞奈米粒子因為表面有AgCl晶體,使粒子有良好的光催化特性。此研究利用穿透式電子顯微鏡(TEM)觀察奈米粒子的尺寸及其形貌,以紫外-可見吸引光譜(UV-vis)觀察反應的變化與光學性質的探討,再用X-ray繞射分析儀(XRD)研究金銀孔洞奈米粒子的晶格和氯化銀的形成。以傳里葉轉換紅外光譜(FTIR)和X光光電子能譜儀(XPS)研究奈米粒子表面化學。此研究也探討不同的反應條件如溫度、金鹽濃度以及使用其他的金銀奈米粒子進行同樣反應,以說明此研究之通用性。
為了改善銀在金銀奈米粒子表面使奈米粒子在水溶液不穩定的現像,本研究藉由抗氧化劑單寧酸(TNA)在氧化態金銀孔洞奈米粒子形成保護膜,再加入還原劑使表面銀離子還原成銀原子。其中單寧酸上的苯環會與染料分子如甲基藍(MB)、孔雀石綠(MG)等分子上的苯環形成π重疊,使測量這些染料分子時,有更好的SERS效果,可測量到1 nM的MG拉曼訊號。此研究量測甲基藍、孔雀石綠和4-硝基苯硫醇的Raman光譜,每7天進行量測,持續28天,以證明單寧酸形成保護膜後奈米粒子在水溶液的穩定性。
英文摘要 In this study, hydrogen peroxide (H2O2)/ phosphate buffered saline (PBS)/ Poly(styrene-alt-maleic acid) sodium salt (PSMA) aqueous solution was used to corrode the AuAg hollow nanoparticles at 80oC. During the raction, the Ag atoms in the nanoparticles of the AuAg hollow nanoparticles would be oxidized into Ag ions and diffuse to the surface of the nanoparticles. Ag ions were captured and fixed by PSMA. Then Ag ions would be reduced to Ag atoms on the nanoparticles surface through the reducing agent to enhance the SERS effect. We used 5 different reducing agents and found that the structure formed by N2H4•H2O had the better SERS effect. In addition, the oxidized-AuAg hollow nanoparticles had AgCl crystals on the surface, which let the nanoparticles performed a good photocatalytic property. The size and morphology of the nanoparticles were observed using a Transmission Electron Microscopy (TEM). Ultraviolet-Visible Spectrophotometer (UV-vis) was used to monitor the reaction and optical properties. X-ray Diffractometer (XRD) helped for studying the lattice of AuAg nanoparticles and the formation of AgCl. The surface chemistry of nanoparticles was studied by using Fourier Transform Infrared spectroscopy (FTIR) and Electron Spectroscopy for Chemical Analysis (XPS). This study would also explores different reaction conditions such as temperature, different concentration of HAuCl4, and used other AuAg nanoparticles for the same reaction to illustrate the versatility of this study.
In order to improve the instability of the nanoparticles caused by the Ag on the AuAg nanoparticles surface, this study used an antioxidant tannic acid (TNA) to form a protective film on the oxidized AuAg hollow nanoparticles, and then added a reducing agent to convert the surface Ag ions to Ag atoms. Among them, the benzene ring on TNA will form a π - π stacking with the benzene ring on dye molecules such as methyl blue (MB), malachite green (MG), etc. MG Raman signal could be measured to 1 nM. So, when measuring these dye molecules, there was a better SERS effect. This study measured the Raman spectra of methyl blue, malachite green, and 4-nitrothiophenol for 28 days. After 28 days, the detection limit for measuring MG remained linear, proving the nanoparticles in aqueous solution were stabile by TNA protective film.
論文目次 Chapter 1 Introduction----------------------------------1
1.1 Surface-enhanced Raman scattering-------------------1
1.1.1 Electromagnetic (EM) enhancement------------------1
1.1.2 Chemical (CM) enhancement-------------------------2
1.1.3 Advantage and Disadvantage of SERS----------------2
1.2 Characteristics of metal nanoparticles--------------3
1.2.1 Bimetal Au-Ag nanoparticles-----------------------3
1.3 SERS substrates-------------------------------------4
1.3.1 Solid-supported SERS substrates-------------------4
1.3.2 Solution-based SERS substrates--------------------4
1.3.3 Shape and size effec in SERS----------------------5
1.4 Synthesis of Au-Ag nanoparticles--------------------6
1.4.1 Galvanic Replacement Reaction---------------------6
1.4.2 Au-Ag nanoparticles with different structures-----6
1.4.3 Seed-mediated synthesis---------------------------7
1.5 Applications of nano-catalyst-----------------------7
1.5.1 4-NP catalytic reaction---------------------------7
1.5.2 Reaction monitoring of conversion of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-APT)----8
1.5.3 Photocatalytic properties of AgCl-----------------9
Chapter 2 Motivation-----------------------------------21
Chapter 3 Materials and Methods------------------------23
3.1 Materials------------------------------------------23
3.2 Equipment------------------------------------------25
3.3 Methods--------------------------------------------27
3.3.1 Synthesis of Ag nanocubes------------------------27
3.3.2 Synthesis of AuAg hollow nanoboxs----------------27
3.3.3 Synthesis of Oxidized-AuAg hollow nanoboxs-------27
3.3.4 Synthesis of Metallic-AuAg hollow nanoboxs-------28
3.3.5 Synthesis of Metallic-AuAg hollow nanoboxs-TNA---28
3.3.6 Raman scattering measurement---------------------28
3.3.7 Catalytic reduction of 4-nitrophenol (4-NP)------29
3.3.8 In Situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP)--------------------------------30
3.3.9 Photocatalytic degradation of methylene blue (MB) dye----------------------------------------------------30
3.3.10 Photocatalytic disinfection performance---------30
Chapter 4 Results and discussion-----------------------32
4.1 Characterization of AuAg hollow nanoboxs, Oxidized-AuAg hollow nanoboxs and Metallic-AuAg hollow nanoboxs-32
4.1.1 Morphological, Compositional and Optica Analysis-32
4.1.2 XRD analysis of the lattice arrangement of elements on the sample surface----------------------------------34
4.1.2 XPS analysis of chmical state of elements present on a sample surface------------------------------------34
4.1.3 Elemental distribution of Oxidized-AuAg hollow nanoboxs and Metallic-AuAg hollow nanoboxs-------------35
4.1.4 Explore the effect of temperature on oxidizability -------------------------------------------------------36
4.1.5 The influence of Cl- and PO34- on the structure--36
4.1.5 To investigate the effect of ion capture PSMA----36
4.1.6 Surface-enhanced Raman scattering results--------37
4.1.7 Discussion on the influence of the properties of different HauCl4 concentration to form nanomaterials on SERS---------------------------------------------------39
4.1.8 Explore the effect of materials formed by different reducing agents on SERS--------------------------------40
4.1.9 Oxidative corrosion/reduction morphology and optical analysis of different gold and silver nanomaterials------------------------------------------41
4.1.10 Discussion on catalytic effect of Au/Ag surface structure composition----------------------------------41
4.1.11 Photodegradable dye experiment------------------42
4.1.12 Photo-antibacterial experiment------------------43
4.2 Characterization of Metallic-AuAg hollow nanoboxs-TNA----------------------------------------------------46
4.2.1 Morphological and Compositional TEM Analysis-----46
4.2.2 Surface structure and composition----------------46
4.2.3 Optical characteristics--------------------------47
4.2.4 Discussion on the influence of the properties of different TNA concentration to form nanomaterials on SERS---------------------------------------------------47
4.2.5 SERS detection of malachite green and stability--48
Chapter 5 Conclusion-----------------------------------79
Reference----------------------------------------------80
參考文獻 Reference
1. Wang, K. D.; Li, S. M.; Petersen, M.; Wang, S.; Lu, X. N., Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy. Nanomaterials-Basel 2018, 8 (10).
2. Mao, Z.; Liu, Z.; Chen, L.; Yang, J.; Zhao, B.; Jung, Y. M.; Wang, X.; Zhao, C., Predictive Value of the Surface-Enhanced Resonance Raman Scattering-Based MTT Assay: A Rapid and Ultrasensitive Method for Cell Viability in Situ. Anal Chem 2013, 85 (15), 7361-7368.
3. Kucheyev, S. O.; Hayes, J. R.; Biener, J.; Huser, T.; Talley, C. E.; Hamza, A. V., Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 2006, 89 (5).
4. Fateixa, S.; Nogueira, H. I. S.; Trindade, T., Hybrid nanostructures for SERS: materials development and chemical detection. Phys. Chem. Chem. Phys. 2015, 17 (33), 21046-21071.
5. Adeyemi, O. S.; Sulaiman, F. A., Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res 2015, 29 (2), 145-149.
6. Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts Chem Res 2001, 34 (3), 181-190.
7. Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assuncao, M.; Rosa, J.; Baptista, P. V., Noble Metal Nanoparticles for Biosensing Applications. Sensors-Basel 2012, 12 (2), 1657-1687.
8. Au, L.; Zheng, D. S.; Zhou, F.; Li, Z. Y.; Li, X. D.; Xia, Y. N., A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. Acs Nano 2008, 2 (8), 1645-1652.
9. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 2003, 107 (3), 668-677.
10. Li, A. R.; Isaacs, S.; Abdulhalim, I.; Li, S. Z., Ultrahigh Enhancement of Electromagnetic Fields by Exciting Localized with Extended Surface Plasmons. J Phys Chem C 2015, 119 (33), 19382-19389.
11. Ferrando, R.; Jellinek, J.; Johnston, R. L., Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108 (3), 845-910.
12. Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F., Unraveling the Evolution and Nature of the Plasmons in (Au Core)-(Ag Shell) Nanorods. Adv Mater 2012, 24 (35), Op200-Op207.
13. Jiao, W. L.; Chen, C.; You, W. B.; Zhao, X. R.; Zhang, J.; Feng, Y. Z.; Wang, P.; Che, R. C., Hollow Palladium-Gold Nanochains with Periodic Concave Structures as Superior ORR Electrocatalysts and Highly Efficient SERS Substrates. Adv Energy Mater 2020, 10 (18).
14. Jiao, W. L.; Chen, C.; You, W. B.; Chen, G. Y.; Xue, S. Y.; Zhang, J.; Liu, J. W.; Feng, Y. Z.; Wang, P.; Wang, Y. Z.; Wen, H. J.; Che, R. C., Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Appl Catal B-Environ 2020, 262.
15. Trindell, J. A.; Duan, Z. Y.; Henkelman, G.; Crooks, R. M., Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem. Rev. 2020, 120 (2), 814-850.
16. Xu, H.; Yan, B.; Wang, J.; Zhang, K.; Li, S. M.; Xiong, Z. P.; Wang, C. Q.; Shiraishi, Y.; Du, Y.; Yang, P., Self-supported porous 2D AuCu triangular nanoprisms as model electrocatalysts for ethylene glycol and glycerol oxidation. J Mater Chem A 2017, 5 (30), 15932-15939.
17. Xu, H.; Song, P. P.; Yan, B.; Wang, J.; Guo, J.; Du, Y. K., Surface-Plasmon-Enhanced Photo-electrocatalytic Ethylene Glycol Oxidation Based on Highly Open AuAg Nanobowls. Acs Sustain Chem Eng 2018, 6 (3), 4138-4146.
18. Su, Q. Q.; Ma, X. Y.; Dong, J.; Jiang, C. Y.; Qian, W. P., A Reproducible SERS Substrate Based on Electrostatically Assisted APTES-Functionalized Surface-Assembly of Gold Nanostars. Acs Appl Mater Inter 2011, 3 (6), 1873-1879.
19. Rodriguez-Lorenzo, L.; Alvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stephan, O.; Kociak, M.; Liz-Marzan, L. M.; de Abajo, F. J. G., Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. J Am Chem Soc 2009, 131 (13), 4616-+.
20. Fortuni, B.; Fujita, Y.; Ricci, M.; Inose, T.; Aubert, R.; Lu, G.; Hutchison, J. A.; Hofkens, J.; Latterini, L.; Uji-i, H., A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. ChemComm 2017, 53 (37), 5121-5124.
21. Sharma, B.; Cardinal, M. F.; Ross, M. B.; Zrimsek, A. B.; Bykov, S. V.; Punihaole, D.; Asher, S. A.; Schatz, G. C.; Van Duyne, R. P., Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Lett. 2016, 16 (12), 7968-7973.
22. Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Das, G.; Zaccaria, R. P.; Krahne, R.; Rondanina, E.; Leoncini, M.; Liberale, C.; De Angelis, F.; Di Fabrizio, E., 3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few- Molecule Surface-Enhanced Raman Scattering. Adv Mater 2014, 26 (15), 2353-2358.
23. Hakonen, A.; Svedendahl, M.; Ogier, R.; Yang, Z. J.; Lodewijks, K.; Verre, R.; Shegai, T.; Andersson, P. O.; Kall, M., Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale 2015, 7 (21), 9405-9410.
24. Issaad, D.; Moustaoui, H.; Medjahed, A.; Lalaoui, L.; Spadavecchia, J.; Bouafia, M.; de la Chapelle, M. L.; Djaker, N., Scattering Correlation Spectroscopy and Raman Spectroscopy of Thiophenol on Gold Nanoparticles: Comparative Study between Nanospheres and Nanourchins. J Phys Chem C 2017, 121 (33), 18254-18262.
25. Deng, R.; Qu, H. X.; Liang, L. J.; Zhang, J.; Zhang, B. Y.; Huang, D. S.; Xu, S. P.; Liang, C. Y.; Xu, W. Q., Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy. Anal Chem 2017, 89 (5), 2844-2851.
26. Fazio, B.; D'Andrea, C.; Foti, A.; Messina, E.; Irrera, A.; Donato, M. G.; Villari, V.; Micali, N.; Marago, O. M.; Gucciardi, P. G., SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating. Sci Rep-Uk 2016, 6.
27. Matthews, J. R.; Payne, C. M.; Hafner, J. H., Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering. Langmuir 2015, 31 (36), 9893-9900.
28. Rycenga, M.; Kim, M. H.; Camargo, P. H. C.; Cobley, C.; Li, Z. Y.; Xia, Y. N., Surface-Enhanced Raman Scattering: Comparison of Three Different Molecules on Single-Crystal Nanocubes and Nanospheres of Silver. J Phys Chem A 2009, 113 (16), 3932-3939.
29. Matteini, P.; Cottat, M.; Tavanti, F.; Panfilova, E.; Scuderi, M.; Nicotra, G.; Menziani, M. C.; Khlebtsov, N.; de Angelis, M.; Pini, R., Site-Selective Surface-Enhanced Raman Detection of Proteins. Acs Nano 2017, 11 (1), 918-926.
30. Jorgenson, E.; Ianoul, A., Biofunctionalization of Plasmonic Nanoparticles with Short Peptides Monitored by SERS. J Phys Chem B 2017, 121 (5), 967-974.
31. Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M., Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property. J Am Chem Soc 2015, 137 (33), 10460-10463.
32. Khoury, C. G.; Vo-Dinh, T., Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J Phys Chem C 2008, 112 (48), 18849-18859.
33. Childs, A.; Vinogradova, E.; Ruiz-Zepeda, F.; Velazquez-Salazar, J. J.; Jose-Yacaman, M., Biocompatible gold/silver nanostars for surface-enhanced Raman scattering. J Raman Spectrosc 2016, 47 (6), 651-655.
34. Sanchez-Gaytan, B. L.; Swanglap, P.; Lamkin, T. J.; Hickey, R. J.; Fakhraai, Z.; Link, S.; Park, S. J., Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties. J Phys Chem C 2012, 116 (18), 10318-10324.
35. Yang, J. K.; Kang, H.; Lee, H.; Jo, A.; Jeong, S.; Jeon, S. J.; Kim, H. I.; Lee, H. Y.; Jeong, D. H.; Kim, J. H.; Lee, Y. S., Single-Step and Rapid Growth of Silver Nanoshells as SERS-Active Nanostructures for Label-Free Detection of Pesticides. Acs Appl Mater Inter 2014, 6 (15), 12541-12549.
36. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J., Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 2008, 37 (5), 898-911.
37. Jana, D.; Gorunmez, Z.; He, J.; Bruzas, I.; Beck, T.; Sagle, L., Surface Enhanced Raman Spectroscopy of a Au@Au Core-Shell Structure Containing a Spiky Shell. J Phys Chem C 2016, 120 (37), 20814-20821.
38. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q., Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117 (7), 5002-5069.
39. Chen, Y. P.; Xianyu, Y. L.; Jiang, X. Y., Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Accounts Chem Res 2017, 50 (2), 310-319.
40. Abdallah, T.; El-Brolosy, T.; Mohamed, M. B.; Easawi, K.; Negm, S.; Talaat, H., Effect of shape and interstice on surface enhanced Raman scattering (SERS) of molecules adsorbed on gold nanoparticles in the near-dipole and quadrupole regions. J Raman Spectrosc 2012, 43 (12), 1924-1930.
41. Das, R.; Soni, R. K., Synthesis and surface-enhanced Raman scattering of indium nanotriangles and nanowires. Rsc Adv 2017, 7 (51), 32255-32263.
42. Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N., 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Adv Mater 2013, 25 (44), 6313-6333.
43. da Silva, A. G. M.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. C., Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. ChemComm 2017, 53 (53), 7135-7148.
44. Bai, T. T.; Lu, P.; Zhang, K. Z.; Zhou, P.; Liu, Y.; Guo, Z. R.; Lu, X., Gold/Silver Bimetallic Nanocrystals: Controllable Synthesis and Biomedical Applications. J Biomed Nanotechnol 2017, 13 (10), 1178-1209.
45. Wei, X. Y.; Fan, Q. K.; Liu, H. P.; Bai, Y. C.; Zhang, L.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B., Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale 2016, 8 (34), 15689-15695.
46. Eshkeiti, A.; Narakathu, B. B.; Reddy, A. S. G.; Moorthi, A.; Atashbar, M. Z.; Rebrosova, E.; Rebros, M.; Joyce, M., Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sensor Actuat B-Chem 2012, 171, 705-711.
47. Niu, W. X.; Zhang, L.; Xu, G. B., Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale 2013, 5 (8), 3172-3181.
48. Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D., Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angew Chem Int Edit 2012, 51 (23), 5629-5633.
49. Hong, M.; Xu, L. D.; Wang, F. L.; Xu, S. L.; Li, H. B.; Li, C. Z.; Liu, J. F., In situ synthesized Au-Ag nanocages on graphene oxide nanosheets: a highly active and recyclable catalyst for the reduction of 4-nitrophenol. New J Chem 2016, 40 (2), 1685-1692.
50. Zhang, H.; Fei, C. Z.; Zhang, D. B.; Tang, F., Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater 2007, 145 (1-2), 227-232.
51. Zelekew, O. A.; Kuo, D. H., A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol. Phys. Chem. Chem. Phys. 2016, 18 (6), 4405-4414.
52. Muniz-Miranda, M., SERS monitoring of the catalytic reduction of 4-nitrophenol on Ag-doped titania nanoparticles. Appl Catal B-Environ 2014, 146, 147-150.
53. Li, N.; Echeverria, M.; Moya, S.; Ruiz, J.; Astruc, D., "Click" Synthesis of Nona-PEG-branched Triazole Dendrimers and Stabilization of Gold Nanoparticles That Efficiently Catalyze p-Nitrophenol Reduction. Inorg Chem 2014, 53 (13), 6954-6961.
54. Li, J.; Liu, C. Y.; Liu, Y., Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2012, 22 (17), 8426-8430.
55. Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C., In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 2011, 3 (8), 3357-3363.
56. Gu, X. M.; Qi, W.; Xu, X. Z.; Sun, Z. H.; Zhang, L. Y.; Liu, W.; Pan, X. L.; Su, D. S., Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014, 6 (12), 6609-6616.
57. Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y., A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2009, 10 (1), 30-35.
58. Pakiari, A.; Jamshidi, Z., Nature and strength of M− S Bonds (M= Au, Ag, and Cu) in binary alloy gold clusters. J. Phys. Chem. A 2010, 114 (34), 9212-9221.
59. Li, P.; Ma, B. B.; Yang, L. B.; Liu, J. H., Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions. ChemComm 2015, 51 (57), 11394-11397.
60. Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H., Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew Chem Int Edit 2008, 47 (41), 7931-7933.
61. Han, L.; Wang, P.; Zhu, C. Z.; Zhai, Y. M.; Dong, S. J., Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst. Nanoscale 2011, 3 (7), 2931-2935.
62. An, C. H.; Peng, S. N.; Sun, Y. G., Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst. Adv Mater 2010, 22 (23), 2570-2574.
63. Zhang, H. B.; Lu, Y. G.; Liu, H.; Fang, J. Z., One-pot synthesis of high-index faceted AgCl nanocrystals with trapezohedral, concave hexoctahedral structures and their photocatalytic activity. Nanoscale 2015, 7 (27), 11591-11601.
64. Qiao, R.; Mao, M. M.; Hu, E. L.; Zhong, Y. J.; Ning, J. Q.; Hu, Y., Facile Formation of Mesoporous BiVO4/Ag/AgCl Heterostructured Microspheres with Enhanced Visible-Light Photoactivity. Inorg Chem 2015, 54 (18), 9033-9039.
65. Zhu, M. S.; Chen, P. L.; Liu, M. H., Graphene Oxide Enwrapped Ag/AgX (X = Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst. Acs Nano 2011, 5 (6), 4529-4536.
66. Wu, Y. M. A.; Li, L.; Li, Z.; Kinaci, A.; Chan, M. K. Y.; Sun, Y. G.; Guest, J. R.; McNulty, I.; Rajh, T.; Liu, Y. Z., Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution. Acs Nano 2016, 10 (3), 3738-3746.
67. Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D., Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc.y 2014, 136 (23), 8153-8156.
68. Liu, Y. T.; Zhou, J.; Wang, B. B.; Jiang, T.; Ho, H. P.; Petti, L.; Mormile, P., Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys. Chem. Chem. Phys. 2015, 17 (10), 6819-6826.
69. Jiji, S. G.; Gopchandran, K. G., Restructuring hollow Au-Ag nanostructures for improved SERS activity. Mater Res Express 2016, 3 (10).
70. Lai, W.; Zhou, J.; Jia, Z. H.; Petti, L.; Mormile, P., Ag@Au hexagonal nanorings: synthesis, mechanistic analysis and structure-dependent optical characteristics. J Mater Chem C 2015, 3 (37), 9726-9733.
71. Liu, K.; Bai, Y. C.; Zhang, L.; Yang, Z. B.; Fan, Q. K.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B., Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Lett. 2016, 16 (6), 3675-3681.
72. Yi, Z.; Zhang, J. B.; Chen, Y.; Chen, S. J.; Luo, J. S.; Tang, Y. J.; Wu, W. D.; Yi, Y. G., Triangular Au-Ag framework nanostructures prepared by multi-stage replacement and their spectral properties. T Nonferr Metal Soc 2011, 21 (9), 2049-2055.
73. Zhang, W. Q.; Rahmani, M.; Niu, W. X.; Ravaine, S.; Hong, M. H.; Lu, X. M., Tuning Interior Nanogaps of Double-shelled Au/Ag Nanoboxes for Surface-Enhanced Raman Scattering. Sci Rep-Uk 2015, 5.
74. Zhang, J. W.; Winget, S. A.; Wu, Y. R.; Su, D.; Sun, X. J.; Xie, Z. X.; Qin, D., Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy. Acs Nano 2016, 10 (2), 2607-2616.
75. Garcia-Leis, A.; Torreggiani, A.; Garcia-Ramos, J. V.; Sanchez-Cortes, S., Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity. Nanoscale 2015, 7 (32), 13629-13637.
76. Chen, D. Z.; Song, Z. X.; Chen, F.; Huang, J.; Wei, J.; Zhao, Y. X., Simply controllable growth of single crystal plasmonic Au-Ag nano-spines with anisotropic multiple sites for highly sensitive and uniform surface-enhanced Raman scattering sensing. Rsc Adv 2016, 6 (70), 66056-66065.
77. Cao, M.; Zhou, L.; Xu, X.; Cheng, S.; Yao, J.-L.; Fan, L.-J., Galvanic replacement approach for bifunctional polyacrylonitrile/Ag–M (M= Au or Pd) nanofibers as SERS-active substrates for monitoring catalytic reactions. J. Mater. Chem. A A 2013, 1 (31), 8942-8949.
78. Ma, T.; Yang, W.; Liu, S.; Zhang, H.; Liang, F., A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 2017, 7 (2), 38.
79. Li, Y.; Ye, Y.; Fan, Y.; Zhou, J.; Jia, L.; Tang, B.; Wang, X., Silver nanoprism-loaded eggshell membrane: a facile platform for in situ sers monitoring of catalytic reactions. Crystals 2017, 7 (2), 45.
80. Najdovski, I.; Selvakannan, P.; O'Mullane, A. P., Electrochemical formation of Cu/Ag surfaces and their applicability as heterogeneous catalysts. Rsc Advances 2014, 4 (14), 7207-7215.
81. Sun, X.; Qin, D., Co-titration of AgNO 3 and HAuCl 4: a new route to the synthesis of Ag@ Ag–Au core–frame nanocubes with enhanced plasmonic and catalytic properties. J. Mater. Chem. A C 2015, 3 (45), 11833-11841.
82. Arora, N.; Mehta, A.; Mishra, A.; Basu, S., 4-Nitrophenol reduction catalysed by Au-Ag bimetallic nanoparticles supported on LDH: Homogeneous vs. heterogeneous catalysis. Appl Clay Sci 2018, 151, 1-9.
83. Wu, X.; Qiu, L.; Yang, Z.; Yan, F., Imidazolium functionalized NT-Im-Au-Ag hybrids for surface-enhanced Raman scattering and catalytic reduction of 4-nitrophenol. Applied Catalysis A: General 2014, 478, 30-37.
84. Lyu, L.-M.; Kao, Y.-C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y.-C.; Kuo, C.-H., Spiny rhombic dodecahedral CuPt nanoframes with enhanced catalytic performance synthesized from Cu nanocube templates. Chem. Mater. 2017, 29 (13), 5681-5692.
85. Jin, Z.; Liu, C.; Qi, K.; Cui, X., Photo-reduced Cu/CuO nanoclusters on TiO 2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 2017, 7, 39695.
86. Sravanthi, K.; Ayodhya, D.; Swamy, P. Y., Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment. J Anal Sci Technol 2018, 9.
87. Xia, Y. D.; Liu, Y.; Shi, N. N.; Zhang, X. G., Highly efficient reduction of 4-nitrophenolate to 4-aminophenolate by Au/-Fe2O3@HAP magnetic composites. Rsc Adv 2019, 9 (18), 10272-10281.
88. Chang, L.; Feng, Y.; Wang, B. Q.; Huang, X. Y.; Yang, D. P.; Lu, Y. G., Dual functional oyster shell-derived Ag/ZnO/CaCO3 nanocomposites with enhanced catalytic and antibacterial activities for water purification. Rsc Adv 2019, 9 (70), 41336-41344.
89. Zheng, G.; Polavarapu, L.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J., Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. ChemComm 2015, 51 (22), 4572-4575.
90. Zhang, Y.; Liu, S.; Lu, W.; Wang, L.; Tian, J.; Sun, X., In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal. Sci. Technol. 2011, 1 (7), 1142-1144.
91. Tang, X.; Cai, W.; Yang, L.; Liu, J., Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectroscopy on single particles of hierarchical peony-like silver microflowers. Nanoscale 2014, 6 (15), 8612-8616.
92. Zhang, K.; Li, G.; Hu, Y., In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy. Nanoscale 2015, 7 (40), 16952-16959.
93. Li, P.; Ma, B.; Yang, L.; Liu, J., Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions. ChemComm 2015, 51 (57), 11394-11397.
94. Zhang, K.; Zhao, J.; Ji, J.; Liu, B., Synthesis of micro-sized shell-isolated 3D plasmonic superstructures for in situ single-particle SERS monitoring. Nanoscale 2016, 8 (15), 7871-7875.
95. Bao, Z. Y.; Lei, D. Y.; Jiang, R.; Liu, X.; Dai, J.; Wang, J.; Chan, H. L.; Tsang, Y. H., Bifunctional Au@ Pt core–shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale 2014, 6 (15), 9063-9070.
96. Yang, J.; Wang, X. Y.; Zhou, L.; Lu, F.; Cai, N.; Li, J. M., Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag-Pd triangular nanoplates. J Saudi Chem Soc 2019, 23 (7), 887-895.
97. Zhang, K.; Liu, Y. J.; Wang, Y. N.; Zhao, J. J.; Liu, B. H., Direct SERS tracking of a chemical reaction at a single 13 nm gold nanoparticle. Chem. Sci. 2019, 10 (6), 1741-1745.
98. Larmour, I. A.; Faulds, K.; Graham, D., The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chem. Sci. 2010, 1 (2).
99. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Nanostructured plasmonic sensors. Chem Rev 2008, 108 (2), 494-521.
100. Etchegoin, P. G., Quo vadis surface-enhanced Raman scattering? Phys Chem Chem Phys 2009, 11 (34), 7348-9.
101. Min, Q.; Santos, M. J. L.; Girotto, E. M.; Brolo, A. G.; Gordon, R., Localized Raman enhancement from a double-hole nanostructure in a metal film. J Phys Chem C 2008, 112 (39), 15098-15101.
102. Cui, Y.; Ren, B.; Yao, J. L.; Gu, R. A.; Tian, Z. Q., Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 2006, 110 (9), 4002-4006.
103. Jana, N. R., Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst 2003, 128 (7), 954-956.
104. Yang, Y.; Wang, W. F.; Li, X. L.; Chen, W.; Fan, N. N.; Zou, C.; Chen, X.; Xu, X. J.; Zhang, L. J.; Huang, S. M., Controlled Growth of Ag/Au Bimetallic Nanorods through Kinetics Control. Chem Mater 2013, 25 (1), 34-41.
105. Sanchez-Iglesias, A.; Carbo-Argibay, E.; Glaria, A.; Rodriguez-Gonzalez, B.; Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M., Rapid Epitaxial Growth of Ag on Au Nanoparticles: From Au Nanorods to Core-Shell Au@Ag Octahedrons. Chem-Eur J 2010, 16 (19), 5558-5563.
106. Ah, C. S.; Do Hong, S.; Jang, D. J., Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B 2001, 105 (33), 7871-7873.
107. Wu, M.; Yan, J. M.; Zhang, X. W.; Zhao, M.; Jiang, Q., Ag2O modified g-C3N4 for highly efficient photocatalytic hydrogen generation under visible light irradiation. J Mater Chem A 2015, 3 (30), 15710-15714.
108. Liang, Y.; Lin, S.; Liu, L.; Hu, J.; Cui, W., Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: Enhanced photocatalytic degradation under visible light irradiation. Appl. Catal. B 2015, 164, 192-203.
109. Adhyapak, P.; Aiyer, R.; Dugasani, S. R.; Kim, H. U.; Song, C. K.; Vinu, A.; Renugopalakrishnan, V.; Park, S. H.; Kim, T.; Lee, H.; Amalnerkar, D., Thickness-dependent humidity sensing by poly(vinyl alcohol) stabilized Au-Ag and Ag-Au core-shell bimetallic nanomorph resistors. R Soc Open Sci 2018, 5 (6), 171986.
110. Khatami, M.; Pourseyedi, S.; Khatami, M.; Hamidi, H.; Zaeifi, M.; Soltani, L., Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour. Bioprocess. 2015, 2 (1).
111. Fleury, B.; Cortes-Huerto, R.; Tache, O.; Testard, F.; Menguy, N.; Spalla, O., Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis. Nano Lett 2015, 15 (9), 6088-94.
112. Plotnichenko, V. G.; Philippovskiy, D. V.; Sokolov, V. O.; Golovanov, V. F.; Polyakova, G. V.; Lisitsky, I. S.; Dianov, E. M., Infrared luminescence in bismuth-doped AgCl crystals. Opt Lett 2013, 38 (16), 2965-8.
113. Han, C. C.; Ge, L.; Chen, C. F.; Li, Y. J.; Zhao, Z.; Xiao, X. L.; Li, Z. L.; Zhang, J. L., Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visible light induced photocatalytic activity. J Mater Chem A 2014, 2 (31), 12594-12600.
114. Wang, P.; Huang, B. B.; Wang, Z. Y.; Lou, Z. Z., Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br), Ag@Ag(Br,I) and Ag@AgCl-AgI. Abstr Pap Am Chem S 2011, 241.
115. Chen, T.; Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Rao, B.; Sheng, H. T.; Yu, H. Z.; Zhu, M. Z., Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci Adv 2017, 3 (8).
116. Sahoo, M.; Mansingh, S.; Parida, K. M., A bimetallic Au-Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light. J Mater Chem A 2019, 7 (13), 7614-7627.
117. Li, L.; Niu, R.; Zhang, Y., Ag-Au bimetallic nanocomposites stabilized with organic-inorganic hybrid microgels: synthesis and their regulated optical and catalytic properties. Rsc Adv 2018, 8 (22), 12428-12438.
118. Skadtchenko, B. O.; Aroca, R., Surface-enhanced Raman scattering of p-nitrothiophenol - Molecular vibrations of its silver salt and the surface complex formed on silver islands and colloids. Spectrochim Acta A 2001, 57 (5), 1009-1016.
119. Varnholt, B.; Oulevey, P.; Luber, S.; Kumara, C.; Dass, A.; Burgi, T., Structural Information on the Au-S Interface of Thiolate-Protected Gold Clusters: A Raman Spectroscopy Study. J Phys Chem C 2014, 118 (18), 9604-9611.
120. Xiao, G. N.; Man, S. Q., Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped Silver nanoparticles. Chem Phys Lett 2007, 447 (4-6), 305-309.
121. Wang, J. Y.; Zhang, L.; Huang, Y. J.; Dandapat, A.; Dai, L. W.; Zhang, G. G.; Lu, X. F.; Zhang, J. W.; Lai, W. H.; Chen, T., Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol. Sci Rep-Uk 2017, 7.
122. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G., Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 2007, 79 (11), 4215-4221.
123. Trinh, N. D.; Nguyen, T. T. B.; Nguyen, T. H., Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Adv Nat Sci-Nanosci 2015, 6 (4).
124. Massonnet, N.; Carella, A.; Jaudouin, O.; Rannou, P.; Laval, G.; Celle, C.; Simonato, J. P., Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J Mater Chem C 2014, 2 (7), 1278-1283.
125. Chen, Q.; Li, J. S.; Li, Y. F., A review of plasma-liquid interactions for nanomaterial synthesis. J Phys D Appl Phys 2015, 48 (42).
126. King, D.; Friend, J.; Kariuki, J., Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode. J Chem Educ 2010, 87 (5), 507-509.
127. Ranoszek-Soliwoda, K.; Tomaszewska, E.; Socha, E.; Krzyczmonik, P.; Ignaczak, A.; Orlowski, P.; Krzyzowska, M.; Celichowski, G.; Grobelny, J., The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res 2017, 19 (8).
128. Rajkumar, C.; Nehru, R.; Chen, S. M.; Kim, H.; Arumugam, S.; Sankar, R., Electrosynthesis of carbon aerogel-modified AuNPs@quercetin via an environmentally benign method for hydrazine (HZ) and hydroxylamine (HA) detection. New J Chem 2020, 44 (2), 586-595.
129. Sun, Y. G.; Mayers, B. T.; Xia, Y. N., Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2002, 2 (5), 481-485.
130. Huang, J. F.; Zhu, Y. H.; Lin, M.; Wang, Q. X.; Zhao, L.; Yang, Y.; Yao, K. X.; Han, Y., Site-Specific. Growth of Au-Pd Alloy Horns on Au Nanorods: A Platform for Highly Sensitive Monitoring of Catalytic Reactions by Surface Enhancement Raman Spectroscopy. J Am Chem Soc 2013, 135 (23), 8552-8561.
131. Bai, Z. H.; Chen, R.; Si, P.; Huang, Y. J.; Sun, H. D.; Kim, D. H., Fluorescent pH Sensor Based on Ag@SiO2 Core-Shell Nanoparticle. Acs Appl Mater Inter 2013, 5 (12), 5856-5860.
132. Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D., Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. J Am Chem Soc 2014, 136 (20), 7474-7479.
133. Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N., Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2007, 2 (9), 2182-2190.
134. Zhang, Q.; Cobley, C. M.; Zeng, J.; Wen, L. P.; Chen, J. Y.; Xia, Y. N., Dissolving Ag from Au-Ag Alloy Nanoboxes with H2O2: A Method for Both Tailoring the Optical Properties and Measuring the H2O2 Concentration. J Phys Chem C 2010, 114 (14), 6396-6400.
135. Gulcin, I.; Huyut, Z.; Elmastas, M.; Aboul-Enein, H. Y., Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 2010, 3 (1), 43-53.
136. Lopes, G. K. B.; Schulman, H. M.; Hermes-Lima, M., Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Bba-Gen Subjects 1999, 1472 (1-2), 142-152.
137. Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C., Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms. Green Chem. 2018, 20 (23), 5318-5326.
138. Agnihotri, S.; Mukherji, S.; Mukherji, S., Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. Rsc Adv 2014, 4 (8), 3974-3983.
139. Ouyang, L.; Yao, L.; Zhou, T. H.; Zhu, L. H., Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor. Anal. Chim. Acta 2018, 1027, 83-91.
140. Fu, W. L.; Zhen, S. J.; Huang, C. Z., One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Analyst 2013, 138 (10), 3075-3081.
141. Li, Y.-l.; Zhu, J.; Weng, G.-j.; Li, J.-j.; Xing, T.-y.; Zhao, J.-w., “Magic mitt”: Morphologically controllable AuAg@AuAg yolk-shell nanostars with better plasmonic optical properties. J. Alloys Compd. 2020, 844.
142. Zhong, L. B.; Liu, Q.; Wu, P.; Niu, Q. F.; Zhang, H.; Zheng, Y. M., Facile On-Site Aqueous Pollutant Monitoring Using a Flexible, Ultralight, and Robust Surface-Enhanced Raman Spectroscopy Substrate: Interface Self-Assembly of Au@Ag Nanocubes on a Polyvinyl Chloride Template. Environ Sci Technol 2018, 52 (10), 5812-5820.
143. Guo, J.; Lu, F.; Zhang, Y. G.; Ma, Q. L.; Yang, S. S.; Liu, G. Q.; Cai, W. P., Controllable corrosion-assisted fabrication of Au-Ag alloyed hollow nanocrystals for highly efficient and environmentally-stable SERS substrates. Nanotechnology 2018, 29 (45).
144. Bharati, M. S. S.; Venugopal, C. B.; Soma, V. R., Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection. Front Phys 2018, 6.
145. Zhang, T.; Zhou, F.; Hang, L. F.; Sun, Y. Q.; Liu, D. L.; Li, H. L.; Liu, G. Q.; Lyu, X. J.; Li, C. C.; Cai, W. P.; Li, Y., Controlled synthesis of sponge-like porous Au-Ag alloy nanocubes for surface-enhanced Raman scattering properties. J Mater Chem C 2017, 5 (42), 11039-11045.
146. Liebig, F.; Sarhan, R. M.; Prietzel, C.; Schmitt, C. N. Z.; Bargheer, M.; Koetz, J., Tuned Surface-Enhanced Raman Scattering Performance of Undulated Au@Ag Triangles. Acs Appl Nano Mater 2018, 1 (4), 1995-2003.
147. Wang, K. G.; Sun, D. W.; Pu, H. B.; Wei, Q. Y., Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 2019, 191, 449-456.
148. Lin, S.; Lin, X.; Han, S. Q. G. W.; He, L.; Zhao, H. Y.; Zhang, J.; Hasi, W. L. J.; Wang, L., Width and length dependent SERS performance of core-shell Au@Ag nanorod self-assembled monolayers. J. Alloys Compd. 2019, 805, 318-326.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw