進階搜尋


下載電子全文  
系統識別號 U0026-2508202020320700
論文名稱(中文) 以數值方法分析同軸噴嘴之雷射沉積過程
論文名稱(英文) Numerical Simulation of Coaxial Laser Cladding Process
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 許庭豪
研究生(英文) Ting-Hao Hsu
學號 N16071037
學位類別 碩士
語文別 中文
論文頁數 61頁
口試委員 指導教授-曾建洲
口試委員-楊天祥
口試委員-吳明勳
中文關鍵字 直接式能量沉積  粉末濃度分布  雷射遮蔽  馬倫格尼效應  冷卻速率 
英文關鍵字 Direct Energy Deposition (DED)  Powder concentration distribution;Laser attenuation  Marangoni effect  Cooling rate 
學科別分類
中文摘要 本研究目的為建立積層製造(Additive Manufacturing)中的直接式能量沉積 (Direct Energy Deposition,DED) 模型,模擬雷射由上方往下加熱其固態基板,使特定範圍內的基板發生相變化而形成融池,同時從上方經過雷射加熱後的金屬粉末注向表面融池,隨著雷射朝加工路徑前進,經掃略過後的部分漸漸凝固冷卻,並在表面形成單道的金屬融覆層,本文將三維空間之融覆過程轉換為等效二維模型,模擬粉末流與雷射漸漸穿入某一截面之成形過程,其中導入經驗證後之粉末分布函數以考慮粉末熱行為,探討粉末流對於融覆表面能量輸入與成形結果之影響,而融池中同時考慮表面張力(Surface tension)、馬倫格尼力(Marangoni force)與固化及液化模型,使金屬相變化過程更符合實際物理現象,並透過調整馬倫格尼效應的強弱,以分析此效應趨使融覆層內熱量與質量的傳遞情形,而過程中所產生的渦漩數量與強弱,不僅改變最終成形尺寸之外,對於其微觀結構也會有所影響,上述分析皆是為了能更加了解加工參數與融覆結果之相關性,從中找出缺陷成因來避免選用導致機械性能不佳之製程參數,以減少原料與時間成本的浪費,將有利於加工前的決策與成本評估。
英文摘要 The purpose of this research is to establish a direct energy deposition (DED) model, which includes coaxial powder feeding system with laser beam. In this study, the rapid solidification and melting process is presented by Computational Fluid Dynamics (CFD) approach under the framework of the volume-of-fluid (VOF) method. The parameters such as surface tension and Marangoni effect are taken into consideration, and furthermore, the transfer of heat and mass driven by the Marangoni effect in the cladding layer is analyzed by adjusting the intensity of the effect. In addition to the influence of the Marangoni effect on the size of the final cladding layer, the number and intensity of the vortex generated in the process also affect the microstructure. These analyses aim to investigate the correlation between processing parameters and the cladding layer, which can identify the causes of defects and avoid the processing parameters that may lead to poor mechanical properties.
論文目次 摘要 I
致謝 V
表目錄 VII
圖目錄 VIII
符號說明 IX
第一章、 緒論 1
1.1 積層製造背景 1
1.2 直接式能量沉積技術 2
1.3 文獻回顧 4
1.4 研究目的 7
第二章、 研究方法 8
第三章、 結果與討論 26
3.1 等效二維模型 26
3.2 數值模型與流場設定 29
3.3 模擬結果 34
3.3.1. 高度效應 36
3.3.2. 遮蔽效應 38
3.3.3. 粉末熱 39
3.3.4. 馬倫格尼效應 40
3.3.5. 冷卻速率 46
第四章、 結論與未來展望 52
4.1 結論 52
4.2 未來展望 54
第五章、 參考文獻 54
參考文獻 [1] Gibson, I., Rosen, D. W., and Stucker, B., 2010, Additive manufacturing technologies, New York, Springer, 238.
[2] Bradshaw, S., Bowyer, A., and Haufe, P., 2010, The Intellectual Property Implications of Low-cost 3D Printing, scripted, 7(1), 5-31.
[3] Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, and Y. M., 2016, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, 83, 127-141.
[4] Graf, B., Gumenyuk, A., and Rethmeier, M., 2012, Laser metal deposition as repair technology for stainless steel and titanium alloys, Physics Procedia, 39, 376-381.
[5] Sher, D., and Tutó, X., 2015, Review of 3D food printing, ELISAVA Temes de disseny, 31, 104-117.
[6] Lim, H. W., and Cassidy, T., 2014, 3D printing technology revolution in future sustainable fashion, Sustainability in Textiles and Fashion.
[7] Khoshnevis, B., Hwang, D., Yao, K. T., and Zhenghao, Y., 2006, Mega-scale fabrication by contour crafting, Int. J. Industrial and Systems Engineering, Vol. 1, No. 3,301-210.
[8] Hager, I., Golonka A., and Putanowicz R., 2016, 3D printing of buildings and building components as the future of sustainable construction, Procedia Engineering, Procedia Engineering, 151, 292-299.
[9] Frazier, W. E., 2014, Metal additive manufacturing: a review, Journal of Materials Engineering and performance, 1917–1928.
[10] Lewandowski, J. J., and Seifi, M., 2016, Metal additive manufacturing: a review of mechanical properties, Annual review of materials research, 151-186.
[11] Wu, J., Zhao, P., Wei, H., Lin, Q., and Zhang Y., 2018, Development of powder distribution model of discontinuous coaxial powder stream in laser direct metal deposition, Powder Technology, 340, 449-458.
[12] Choi, J., Han, L., and Hua, Y., 2005, Modeling and experiments of laser cladding with droplet injection, Journal of heat transfer, 127(9), 978-986.
[13] Han, L., Phatak, K. M., and Liou, F. W., 2004, Modeling of laser cladding with powder injection, Metallurgical and Materials Transactions B, 35(6), 1139-1150.
[14] Lin, J., A simple model of powder catchment in coaxial laser cladding, 1999, Optics & Laser Technology, 31, 233-238.
[15] Govekar, E., Jeromen, A., Kuznetsov, A., Kotar, M., and Kondo, M., 2018, Annular laser beam based direct metal deposition, Procedia CIRP, 74, 222-227.
[16] Zhao, G., Cho, C., and Kim, J. D., 2003, Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process, International Journal of Mechanical Sciences, 45, 777-796.
[17] Huang, Y., Characterization of dilution action in laser-induction hybrid cladding, 2011, Optics & Laser Technology, 43, 965-973.
[18] Xu, G., Kutsuna, M., Liu, Z., and Sun, L., 2006, Characteristic behaviours of clad layer by a multi-layer laser cladding with powder mixture of Stellite-6 and tungsten carbide, Surface and Coatings Technology, 43, 965-973.
[19] Fathi, A., Toyserkani, E., and Khajepour, A., Prediction of melt pool depth and dilution in laser powder deposition, 2006, Journal of Physics D: Applied Physics, 39, 2613-2623.
[20] Näkki, J., Tuominen, J., and Vuoristo, P., 2017, Effect of minor elements on solidification cracking and dilution of alloy 625 powders in laser cladding, Journal of Laser Applications, 29, 012014.
[21] Huang, Y., Ansari, M., Asgari, H., Farshidianfar, M. H., Sarker, D., Khamesee, M. B., Toyserkani, E., 2019, Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powderfed additive manufacturing), Journal of Materials Processing Tech, 274, 111286.
[22] de Oliveira, U., Ocelik, V., and de Hosson, J. Th. M., 2005, Analysis of coaxial laser cladding processing conditions, Surface & Coatings Technology, 197, 127-136.
[23] Ocelík,V., de Oliveira, U., de Boer, M., and de Hosson, J. Th. M., 2007, Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties, Surface & Coatings Technology, 201, 5875-5883.
[24] Nenadl, O., Ocelík, V., Palavra, A., and de Hosson, J. Th. M., 2014, The prediction of coating geometry from main processing parameters in laser cladding, Physics Procedia, 56, 220-227.
[25] El, Cheikha, H., Courant, B., Hascoët, J.-Y., and Guillén, R., 2012, Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning, Journal of Materials Processing Technology, 212, 1832-1839.
[26] Diniz, Neto, O. O., and Vilar, R., 2002, Physical–computational model to describe the interaction between a laser beam and a powder jet in laser surface processing, Journal of Laser Applications, 14, 46-51.
[27] Tabernero, I., Lamikiz, A., Ukar, E., López, de, Lacalle, L. N., Angulo C., and Urbikain, G., 2010, Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding, Journal of Materials Processing Technology, 210, 2125-2134.
[28] Wen, S. Y., Shin, Y. C., Murthy, J. Y., and Sojka, P. E., 2009, Modeling of coaxial powder flow for the laser direct deposition process, Journal of Heat and Mass Transfer, 52, 5867-5877.
[29] Tan, H., Zhang, F., Wen, R., Chen, J., and Huang, W., 2012, Experiment study of powder flow feed behavior of laser solid forming, Optics and Lasers in Engineering, 50, 391-398.
[30] Tan, H., Zhang, F., Fu, X., Meng, J., Hu, G., Fan, W., and Huang, W., 2016, Development of powder flow model of laser solid forming by analysis method, Int J Adv Manuf Technol, 82, 1421-1431.
[31] Fu, Y., Loredo, A., Martin, B., and Vannes, A. B., 2002, A theoretical model for laser and powder particles interaction during laser cladding, Journal of Materials Processing Technology, 128, 106-112.
[32] Pinkerton, A. J., 2007, An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition, Journal of Physics D: Applied Physics, 40,7323-7334.
[33] Huang, Y., Khamesee, M. B., and Toyserkani, E., 2016, A comprehensive analytical model for laser powder-fed additive manufacturing, Additive Manufacturing, 12, 90-99.
[34] Lee, Y. S., Nordin, M., Babu, S. S., and Farson, D. F., 2014, Influence of fluid convection on weld pool formation in laser cladding, 93, 292-300.
[35] Han, L., Liou, F. W., and Musti, S., 2005, Thermal behavior and geometry model of melt pool in laser material process, Journal of Heat Transfer, 127, 1005-1014.
[36] Arrizubieta, J. I., Lamikiz, A., Klocke, F, and Martínez, S., 2017, Evaluation of the relevance of melt pool dynamics in Laser Material Deposition process modeling, International Journal of Heat and Mass Transfer, 115, 80-91.
[37] Pinkerton, A. J., Syed, W. U. H., and Karadge, M. Li. L., 2005, Explaining microstructural and physical variations in rapid additive manufactured Waspaloy parts through the laser-deposition thermal cycle, ICALEO, 822-831.
[38] Gan, Z., Liu, H., Li, S., He, X., Yu , G., 2017, Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron, International Journal of Heat and Mass Transfer, 111, 709-722.
[39] Chang, H. T., 2018, Numerical Simulation of the Direct Energy Deposition Process.
[40] Hirt, C. W., and Nichols, B. D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1), 201-225.
[41] Kheloufi, K., and Amara, E. H., 2011, Simulation of Geometry and Heat Transfer in a Thin Wall Produced by Direct Laser Powder Deposition, In Advanced Materials Research, 227, 134-137.
[42] Tan, H., Zhang, F., Fu, X., Meng, J., Hu, G., and Fan, W., 2016, Development of powder flow model of laser solid forming by analysis method, Int J Adv Manuf Technol, 82, 1421-1431.
[43] Tan, H., Zhang, F., Wen, R., Chen, J., and Huang, W., 2012, Experiment study of powder flow feed behavior of laser solid forming, Optics and Lasers in Engineering, 50, 391-398.
[44] Gong, X., Zhang, Y., and Liu, M., 2013, Powder transport model for laser cladding by lateral powder feeding: I. Powder flow field with cylindrical distribution, Int J Adv Manuf Technol, 67, 2501-2509.
[45] Carman, P. C., 1997, Solidification and Melting, Chemical Engineering Research and Design, 75, S32-S48.
[46] Qi, H., Mazumder, J., and Ki, H., 2006, Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition, Journal of applied physics, 100(2).
[47] Brackbill J. U., Kothe D. B., and Zemach C., 1992, A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-54.
[48] Zhang, H.-O., Kong, F.-R., Wang, G.-L., and Zeng, L.-F., 2006, Numerical simulation of multiphase transient field during plasma deposition manufacturing, Journal of applied physics, 100(2).
[49] Marangoni, C., 1865, Sull'espansione delle goccie d'un liquido galleggianti sulla superficie di altro liquid, Tipographia dei fratelli Fusi, Pavia.
[50] Qiu, C., Panwisawas, C., Ward, M., Basoalto, H. C., and Brooks, J. W., 2015, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia, 96, 72-79.
[51] He, X., DebRoy, T., and Fuerschbach, P. W., 2003, Alloying element vaporization during laser spot welding of stainless steel, Phys. D: Appl. Phys., 36, 3079-3088.
[52] Han, L., Liou, F. W., and Musti, S., 2005, Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process, Journal of Heat Transfer , 127, 1005-1014.
[53] ANSYS Documentation, Fluent Theory Guide 15.0
[54] Lei, Y. P., Murakawa, H., Shi, Y. W., and Li, X. Y., 2001, Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting, 21, 276-290.
[55] Courtois, M., Carin, M., Masson, P. L., Gaied, S., and Balabane, M., 2013, A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding, J. Phys. D: Appl. Phys., 46(505305), 1-14.
[56] Courtois, M., Carin, M., Masson, P. L., Gaied, S., and Balabane, M., 2014, A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding, J. Laser Appl., 26(4), 042001-1-9.
[57] http://www.cas.manchester.ac.uk/documents/hughcoe/lecture42007[1].pdf
[58] Frenk, A., Vandyoussefi, M., Wagniere, J. D., and Kurz, W., 1997, Analysis of the Laser-Cladding Process for Stellite on Steel, Materials transactions B, 501-508.
[59] https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node373.htm
[60] Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere.
[61] Barth, T. J., and Jespersen, D., 1989, The design and application of upwind schemes on unstructured meshes, Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting.
[62] Ubbink, O., 1997, Numerical Prediction of Two Fluid Systems With Sharp Interfaces, PhD thesis, Imperial College of Science, Technology and Medicine.
[63] Jouvard, J. M., Grevey, D. F., Lemoine, F., and VANNES, A. B., 1997, Continuous wave Nd: YAG laser cladding modeling: a physical study of track creation during low power processing, Journal of Laser Applications, 9, 43-50.
[64] Kheloufi, K., Amara E. H., 2011, Simulation of Geometry and Heat Transfer in a Thin Wall Produced by Direct Laser Powder Deposition, Advanced Materials Research, 227, 134-137.
[65] Wei, H. L., Mazumder, J., DebRoy, T., 2015, Evolution of solidification texture during additive manufacturing, Scientific reports, 1-7.
[66] Kurz, W., Fisher, D. J., 1981, Dendrite growth at the limit of stability: tip radius and spacing, Acta Metallurgica, 29, 11-20.
[67] Zhong, M., Liu W., Yao, K., Goussain, J. C., Mayer, C., Becker, A., 2002, Microstructural evolution in high power laser cladding of Stellite 6+WC layers, Surface and Coatings Technology, 157, 128-137.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw