進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202017450000
論文名稱(中文) 應用即時硬體模擬進行複合試驗之雛型規劃與檢討
論文名稱(英文) Evaluating Prototype Design of Real-Time Hybrid Testing by Hardware-in-the-loop Simulation
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 林亮宇
研究生(英文) Liang-Yu Lin
電子信箱 kly.lin83@gmail.com
學號 N66071079
學位類別 碩士
語文別 中文
論文頁數 234頁
口試委員 口試委員-林其璋
口試委員-洪李陵
口試委員-王哲夫
口試委員-張長菁
指導教授-朱世禹
中文關鍵字 複合實驗  即時硬體模擬  主動式質量阻尼器  線性二次調節器  直接輸出回饋  最佳化控制理論  時間延遲效應  Simulink Real-Time  FRF  OKID/ERA  轉換函數 
英文關鍵字 real-time hybrid testing  hardware-in-the-loop simulation  active mass damper  direct output feedback  optimal control theory  time delay effect  Simulink Real-Time  FRF  OKID/ERA  transfer function 
學科別分類
中文摘要 近年來,人們對於建築物隔減震的觀念日益加深,透過結構控制系統的應用,可降低結構物因地震所造成的損害。為了證明結構控制系統的效果,將結構物以縮尺模型替代之振動台實驗為最直接之驗證方式,但是礙於研究成本與實驗空間,發展出即時振動台複合實驗,其可透過振動台而即時地呈現出受控結構的反應,但是實驗的進行仍然存在著一定的變數與不確定性,因此本文以主動式質量阻尼器為例,首先探討時間延遲對於主動控制系統的影響,接著藉由硬體模擬可即時地模擬複雜實驗系統的特性,透過即時硬體模擬進行複合實驗架構的初步規劃,並利用性能測試,檢驗真實AMD模型的工作範圍,接著利用FRF與OKID/ERA之系統識別方法得出AMD之頻率域特性與轉換函數,如此即可應用於即時硬體模擬的架構中,並與前人之複合實驗結果進行比較,以驗證識別結果的正確性。因此,透過本文之識別與測試,未來即可藉由此硬體模擬之流程與架構,對於後續之複合實驗或振動台實驗進行可行性之評估與實驗結果之預估,進而大幅地提升實驗的成功率。
英文摘要 In recent years, the concept of seismic isolation and vibration mitigation has deepened. Through the application of structural control systems, damage to structures caused by earthquakes can be reduced. In order to verify the effectiveness of the structure control system, shaking table test in which the structure is replaced by a scaled-down model is the most direct verification method. However, due to the cost and space limitation, the real-time hybrid testing technology is developed, which can present the response of full-scale controlled structure through the shaking table in real-time. However, there are still uncertainties in the process of the experiment. Therefore, this thesis takes the active mass damper (AMD) as an example to discuss the influence of time delay on the active control system in the beginning. Then carry out the preliminary planning of real-time hybrid testing by hardware-in-the-loop (HIL) simulation which can simulate a complex system in real-time. Afterward, conduct performance test to verify the working range of the AMD device, then use the system identification method including FRF and OKID/ERA to obtain the frequency domain performance and transfer function of the AMD. In this way, the results of the proposed framework of HIL simulation can be adopted and compared with the previous real-time hybrid testing results to verify the accuracy of the identified transfer function. Therefore, through the identification and testing in this study, the process and framework of this hardware simulation can be used to evaluate the feasibility and the results of real-time hybrid testing or shaking table test in the future. Furthermore, the probability of success in an experiment can be greatly improved.
論文目次 摘要 I
Extended Abstract II
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 XI
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 關於主動控制之文獻 3
1.2.2 關於複合實驗之文獻 4
1.2.3 關於即時硬體模擬之文獻 5
1.3 本文內容 6
第2章 AMD控制系統之運動方程式與控制理論介紹 8
2.1 前言 8
2.2 單自由度主結構配置AMD之系統 8
2.2.1 系統運動方程式 8
2.2.2 考慮延遲時間之連續時間系統離散化 10
2.3 線性二次調節器控制法 12
2.3.1 連續時間控制增益之推導 12
2.3.2 離散時間控制增益之推導 15
2.3.3 頻率域穩定性分析 19
第3章 應用伺服馬達振動平台開發為AMD之時間域數值模擬 25
3.1 前言 25
3.2 伺服馬達振動平台 25
3.2.1 硬體介紹 26
3.2.2 軟體介紹 27
3.3 AMD系統之時間域數值模擬 29
3.3.1 系統基本參數 29
3.3.2 固定系統延遲時間,變動控制參數 30
3.3.3 固定控制參數,變動系統延遲時間 36
3.3.4 頻率域分析 37
第4章 應用類比式硬體模擬進行AMD控制系統之複合實驗規劃 68
4.1 前言 68
4.2 類比式硬體模擬之設備與軟體 68
4.2.1 訊號傳輸系統 68
4.2.2 Simulink Real-Time作業環境 69
4.3 AMD理論數值模型之類比式硬體模擬 71
4.3.1 AMD理論數值模型之類比式硬體模擬流程 71
4.3.2 結果分析 73
第5章 應用AMD模型識別與類比式硬體模擬進行複合實驗之檢討 120
5.1 前言 120
5.2 系統識別方法之理論 121
5.2.1 頻率響應函數(Frequency Response Function, FRF) 121
5.2.2 觀測器/卡曼濾波器識別法(Observer/Kalman Filter Identification, OKID) 123
5.2.3 特徵系統實現法(Eigensystem Realization Algorithm, ERA) 125
5.2.4 AMD真實模型轉換函數之建立 126
5.3 應用伺服馬達振動平台開發為AMD之性能測試 127
5.3.1 實驗配置 127
5.3.2 單頻正弦波測試 128
5.3.3 White Noise測試 132
5.4 應用AMD識別模型之類比式硬體模擬驗證 135
5.4.1 AMD複合實驗簡述 135
5.4.2 應用AMD識別模型之類比式硬體模擬流程 136
5.4.3 結果分析 138
第6章 結論與建議 222
6.1 結論 222
6.2 建議 224
參考文獻 227
附錄 231
參考文獻 [1] Hakuno, M., Shidawara, M., & Hara, T., “Dynamic destructive test of a cantilever beam controlled by an analog-computer”, Japan society of civil engineers, Vol. 1969, No. 171, pp. 1-9, (1969).
[2] Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H., “Non-linear earthquake response analysis of structures by a computer-actuator on-line system”, Transactions of the Architectural Institute of Japan, Vol. 229, No. 0, pp. 77-83,190, (1975).
[3] Dermitzakis, S. N., & Mahin, S. A., “Development of substructuring techniques for on-line computer controlled seismic performance testing”, University of California, Berkeley, (1985)
[4] Nakashima, M., Kato, H., & Takaoka, E., “Development of real‐time pseudo dynamic testing”, Earthquake Engineering & Structural Dynamics, Vol. 21, No. 1, pp. 79-92, (1992).
[5] Agrawal, A. K., Fujino, Y., & Bhartia, B. K., “Instability due to time delay and its compensation in active control of structures”, Earthquake Engineering & Structural Dynamics, Vol. 22, No. 3, pp. 211-224, (1993).
[6] Inaudi, J. A., & Kelly, J. M., “A robust delay‐compensation technique based on memory”, Earthquake Engineering & Structural Dynamics, Vol. 23, No. 9, pp. 987-1001, (1994).
[7] Chung, L. L., Lin, C. C., & Lu, K. H., “Time‐delay control of structures”, Earthquake Engineering & Structural Dynamics, Vol. 24, No. 5, pp. 687-701, (1995).
[8] Lin, C. C., Sheu, J. H., Chu, S. Y., & Chung, L. L., “Time‐delay effect and its solution for optimal output feedback control of structures”, Earthquake Engineering & Structural Dynamics, Vol. 25, No. 6, pp. 547-559, (1996).
[9] Agrawal, A., & Yang, J., “Effect of fixed time delay on stability and performance of actively controlled civil engineering structures”, Earthquake Engineering & Structural Dynamics, Vol. 26, No. 11, pp. 1169-1185, (1997).
[10] Chung, W. J., Yun, C. B., Kim, N. S., & Seo, J. W., “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures”, Engineering Structures, Vol. 21, No. 4, pp. 365-379, (1999).
[11] Horiuchi, T., Inoue, M., Konno, T., & Yamagishi, W., “Development of a real-time hybrid experimental system using a shaking table - (Proposal of experiment concept and feasibility study with rigid secondary system)”, Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, Vol. 42, No. 2, pp. 255-264, (1999).
[12] Ledin, J. A., “Hardware-in-the-loop simulation”, Embedded Systems Programming, Vol. 12, pp. 42-62, (1999).
[13] Abdalla, O. M., Hammad, S. A., & Yousef, A. H., “A framework for real time hardware in the loop simulation for control design”, Computers and Systems Engineering Department, Ain Shams University, Egypt.
[14] Chu, S. Y., Soong, T. T., Lin, C. C., & Chen, Y. Z., “Time-delay effect and compensation on direct output feedback controlled mass damper systems”, Earthquake Engineering & Structural Dynamics, Vol. 31, No. 1, pp. 121-137, (2002).
[15] Chu, S. Y., Soong, T. T., Reinhorn, A. M., Helgeson, R. J., & Riley, M. A., “Integration issues in implementation of structural control systems”, Journal of Structural Control, Vol. 9, No. 1, pp. 31-58, (2002).
[16] Chu, S. Y., Soong, T. T., & Reinhorn, A., “Real-time active control verification via a structural simulator”, Engineering Structures, Vol. 24, No. 3, pp. 343-353, (2002).
[17] Carrion, J. E., & Spencer Jr, B. F., “Model-based strategies for real-time hybrid testing”, Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, (2007)
[18] Chu, S. Y., Yeh, S. W., Lu, L. Y., & Peng, C. H., “Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation”, Earthquakes and Structures, Vol. 12, No. 4, pp. 425-436, (2017).
[19] Chu, S. Y., Lu, L. Y., & Yeh, S. W., “Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table”, Structural Control and Health Monitoring, Vol. 25, No. 3, (2018).
[20] Nakashima, M., “Hybrid simulation: An early history”, Earthquake Engineering & Structural Dynamics, Vol. 49, No. 10, pp. 949-962, (2020).
[21] 朱世禹,「直接輸出回饋之主動結構控制」,國立中興大學土木工程研究所,碩士論文,(1992)。
[22] 呂國華,「考慮時間延遲之離散時間系統最佳直接輸出回饋控制」,國立中興大學土木工程研究所,碩士論文,(1993)。
[23] 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,國立成功大學土木工程研究所,碩士論文,(2007)。
[24] 鄒永楷,「應用伺服馬達控制平台進行主動質量阻尼器之研發與測試」,國立成功大學土木工程研究所,碩士論文,(2012)。
[25] 梁婷茹,「伺服馬達控制質量阻尼器之混合實驗」,國立成功大學土木工程研究所,碩士論文,(2013)。
[26] 賈博宇,「振動台效能對PFCMD即時複合實驗之影響探討」,國立成功大學土木工程研究所,碩士論文,(2016)。
[27] 鄧孟澤,「應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討」,國立成功大學土木工程研究所,碩士論文,(2019)。
[28] 黃智遠,「配置 LSCMD 多自由度系統之類比式硬體模擬試驗」,國立成功大學土木工程研究所,碩士論文,(2019)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw