進階搜尋


下載電子全文  
系統識別號 U0026-2508202017260200
論文名稱(中文) 複合材料雷射熱黏合製程之建模與分析
論文名稱(英文) Modeling and Analysis of Composite Material Bonding by Laser Heating
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 鄭兆廷
研究生(英文) Chao-Ting Cheng
學號 N16071118
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-楊天祥
口試委員-陳國聲
口試委員-何清政
口試委員-溫昌達
中文關鍵字 雷射加熱黏合  雷射分布  數學熱傳模型  解析解  數值解 
英文關鍵字 laser heating bonding  laser distribution  heat transfer model  analytical solution  numerical solution 
學科別分類
中文摘要 現今許多產品都希望能達到同時兼顧輕量化和堅固兩項特性,於是複合材料就成為製造業急於開發的一項材料,而能夠快速加工複合材料的自動纖維鋪放技術也將會取代傳統使用高壓釜加工的技術,因此許多產業正在積極的開發自動纖維鋪放技術。而複合材料中又屬熱塑性複合材料最被重視,因為與熱固性複合材料相比,熱塑性複合材料擁有更多優點,例如:韌性較高、維修方便、可反覆加熱冷卻成型、成本低、原料不須低溫儲存、成型加工周期較短,而且它相較於熱固性碳纖維複合材料具有不汙染環境的特性。所以本研究將建立模型並分析熱塑性的碳纖維複合材料進行雷射加熱黏合的過程。
在製程中最重要的參數之一為雷射功率分布,本研究使用幾何光學原理計算出雷射光的分布,並且將結果使用在之後的數學熱傳模型中幫助計算雷射功率。再來本研究將計算碳纖維溫度分布的部份分為一維和二維兩種不同的模型,其中一維又分別使用解析解和數值解兩種不同的分析方法,最後則使用這些方法解出不同參數下的碳纖維溫度分布,再將這些結果進行分析和討論。
在結果中我們計算出不同雷射功率和黏合速率下的黏合點溫度,可以看到當雷射功率增加時,黏合點的溫度會上升。而當黏合速率下降時,黏合點的溫度同時也會上升,這些結果最終將繪製成等溫線圖成為幫助製程的工具。本文也觀察到溫度在碳纖維厚度方向的變化。像是碳纖維厚度增加到五層時,碳纖維表面與底層的溫度會相差15^。C左右。本文也將這些結果繪製成圖,可以有效的幫助製程在更簡潔方便的情況下完成。
英文摘要 Many products hope to achieve both light weight and high toughness, so composite materials have become a solution that the manufacturing industry is eager to develop. And automatic fiber placement technology that can quickly process composite materials will also replace the traditional processing technology, so many industries are actively devoted to its development. However, thermoplastic composite material is more promising than thermosetting composite materials, because thermoplastic composite materials have more advantages (e.g. higher toughness, easy maintenance, reversible heating and cooling molding and low cost etc.). Therefore, in this work we will establish a model and analyze the process of laser heating bonding of thermoplastic carbon fiber composite materials. One of the most important parameters in this process is the laser power distribution. In this work, a simple geometry is used to calculate the laser irradiance distribution on the carbon fiber. And the results are used in the heat transfer model to help calculate the laser distribution. In this work, we use both one-dimensional (1-D) and two-dimensional (2-D) thermal models to calculate the temperature distribution of carbon fiber. And 1-D model is solved by both analytical solution and numerical solution. We can calculate temperature distribution on carbon fiber under different parameters. And these results can be used to help improve process’s efficiency.
論文目次 摘要 i
Extended Abstract ii
致謝 xvii
目錄 xviii
圖目錄 xxi
表目錄 xxv
符號說明 xxvi
1. 緒論 1
1.1 前言 1
1.2 複合材料簡介 2
1.3 研究動機與目的 2
1.4 文獻回顧 5
1.5 全文架構 7
2. 雷射照度分析 9
2.1 雷射光幾何參數 9
2.2 雷射照度分析 15
2.3 小結 21
3. 穩態熱傳模型 22
3.1 基本假設 22
3.2 統御方程式與邊界條件 24
3.3 無因次化 28
3.4 一維穩態熱傳模型 29
3.5 熱塑性碳纖維複合材料基本參數 31
4. 一維穩態熱傳分析與討論 32
4.1 解析解計算 32
4.2 解析解計算結果與討論 38
4.2.1 雷射功率和黏合速率對於溫度分布的影響 38
4.2.2 雷射功率與黏合速率之等溫線圖 43
4.3 數值計算方法 47
4.3.1 離散方法 48
4.3.2 程式流程 54
4.4 數值計算結果與討論 55
4.4.1 格點分析 55
4.4.2 一維數值解與解析解的比較 57
4.4.3 餘溫影響與分析 59
5. 二維穩態熱傳分析與討論 63
5.1 數值計算方法 63
5.1.1 統御方程式簡化 63
5.1.2 離散方法 64
5.1.3 程式流程 68
5.2 結果與討論 69
5.2.1 格點分析 69
5.2.2 二維與一維熱傳模型之比較 73
5.2.3 厚度方向的溫度變化 76
5.2.4 加熱點間隔距離對於溫度分布的影響 78
5.2.5 雷射功率和黏合速率對於黏合點溫度的影響 81
5.2.6 幾何參數對於溫度分布的影響 83
5.2.7 持溫時間 85
6. 結論與未來工作 86
6.1 結論 86
6.2 本文貢獻 86
6.3 未來工作 87
參考文獻 I
附錄 IV
附錄A 一維穩態熱傳模型離散式 IV
附錄B 二維穩態熱傳模型離散式 X
參考文獻 BOEING
https://www.boeing.com/
F. O. Sonmez and H. T. Hahn, “Modeling of heat transfer and crystallization in thermoplastic composite tape placement process,” Journal of Thermoplastic Composite Materials, vol. 10, pp. 198–240, 1997.
R. Schledjewski and M. Latrille, “Processing of unidirectional fiber reinforced tapes- fundamentals on the way to a process simulation tool,” Composites Science and Technology, vol. 63, pp. 2111–2118, 2003.
Y. M. P. Toso, P. Ermanni and D. Poulikakos, “Thermal phenomena in fiber-reinforced thermoplastic tape winding process: Computational simulations and experimental validations,” Journal of Composite Materials, vol. 38, pp. 107–135, 2004.
J. Tierney and J. W. Gillespie Jr., “Modeling of heat transfer and void dynamics for the thermoplastic composite tow-placement process,” Journal of Composite Materials, vol. 37, pp. 1745–1768, 2003.
H. Abramovich, Stability and Vibrations of Thin Walled Composite Structures, Woodhead Publishing, 2017.
「ITRI-108 複合材料計畫」技術研究院-雷射與積層製造科技中心。
O. Çelik, D. Peeters, C. Dransfeld and J. Teuwen, “Intimate contact development during laser assisted fiber placement: Microstructure and effect of process parameters,” Composite Part A, vol. 134, 105888, 2020.
Automated Dynamics
http://www.automateddynamics.com/resources/innovation/laser-heating-for-thermoplastic-and-thermoset-fiber-placement
Automated Dynamics
http://www.automateddynamics.com/article/thermoplastic-composite-basics/processing-methods/automated-fiber-placement
Z. August, G. Ostrander, J. Michasiow, and D. Hauber, “Recent Developments in Automated Fiber Placement of Thermoplastic Composites,” Sampe Journal, vol. 50, pp. 30-37, 2014.
F. O. Sonmez and M. Akbulut, “Process optimization of tape placement for thermoplastic composites,” Composites Part A, vol. 38, pp. 2013–2023, 2007.
J. Tierney and J. W. Gillespie Jr., “Modeling of in situ strength development for the thermoplastic composite tow placement process,” Journal of Composite Materials, vol. 40, pp. 1487–1506, 2006.
F. O. Sonmez and H. T. Hahn, “Analysis of on-line consolidation process in thermoplastic composite tape placement,” Journal of Thermoplastic Composite Materials, vol. 10, pp. 543–572, 1997.
S. M. Grove, “Thermal modelling of tape laying with continuous carbon fibre-reinforced thermoplastic,” Composites, vol. 19, pp. 367–375, 1988.
M. Nejhad, R. Cope, and S. Güçeri, “Thermal analysis of in-situ thermoplastic composite tape laying,” Journal of Thermoplastic Composite Materials, vol. 4, pp. 20–45, 1991.
E. P. Beyeler and S. I. Güçeri, “Thermal analysis of laser-assisted thermoplastic-matrix composite tape consolidation,” Journal of Heat Transfer, vol. 110 pp. 424–430, 1988.
M. Steyer, Laserunterstützes Tapelegeverfahren zur Fertigung endlosfaserverstärkter Thermoplastlaminate, PhD Thesis, RWTH Aachen, 2013.
C. M. Stokes-Griffin and P. Compston, “A combined optical-thermal model for near-infrared laser heating of thermoplastic composites in an automated tape placement process,” Composites Part A, vol. 75, pp. 104-115, 2015.
T. Weiler, M. Emonts, P. Striet, S. Gronenborn and H. Janssen, “Optical Modelling Of Vcsel-Assisted Thermoplastic Tape Placement,” 17^thEuropean Conference on Composite Materials, Munich, Germany, 2016.
C. M. Stokes-Griffin and P. Compston, “Optical characterisation and modelling for oblique near-infrared laser heating of carbon fiber reinforced thermoplastic composites,” Optics and Lasers in Engineering, vol. 72, pp. 1-11, 2015.
M. Masamitsu, N. Tetsuo, K. Satoshi and K. Takeo, “FDTD calculations of the divergence angle of multi-mode VCSELs,” Proceedings of SPIE - The International Society for Optical Engineering 5722, 2005.
F. Yang and R. Pitchumani, “Non-isothermal healing and interlaminar bond strength evolution during thermoplastic matrix composites processing,” Polymer Composites, vol. 24, pp. 263–278, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw