進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202016544600
論文名稱(中文) 開發便攜式表面增強拉曼散射傳感器應用於檢測水產品中的有害物質及其他應用
論文名稱(英文) Develop portable surface-enhanced Raman scattering sensors to detect harmful materials in aquatic products and other applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 陳博鈞
研究生(英文) Po-Chun Chen
學號 L76071095
學位類別 碩士
語文別 英文
論文頁數 95頁
口試委員 指導教授-黃志嘉
口試委員-周禮君
口試委員-謝達斌
口試委員-廖奕翰
口試委員-黃志清
中文關鍵字 表面增強拉曼散射  商品化  雙金屬奈米材料  柔性基板  食品安全檢測 
英文關鍵字 surface-enhanced Raman scattering  commercialization  bimetallic nanoparticles  flexible substrates  food safety inspection 
學科別分類
中文摘要 拉曼光譜學分析樣品是近年來的熱門研究項目,由於表面增強拉曼散射的效應使得許多貴金屬奈米材料及試片被開發出來,並用於各種領域的檢測。由於近年來食品安全問題層出不窮,傳統上用於食安檢測的質譜儀分析不僅價格昂貴,也受到諸多限制,因此以食安方面的快速檢測試片是有市場需求的。本篇研究配合台達電的產學合作,開發一種用於食安檢測的試片,並且以成本低、製作簡單、快速且可量產化的拉曼檢測試片。本篇研究從濾紙材質的選擇、貴金屬奈米顆粒的生長方式、種類等等開始研究,並開發出以金銀雙金屬奈米結構的紙張基板,並且符合上述商品化的要求。為了更進一步的測試實際上用於食安檢測的效果,我們參考了食藥署及其他文獻裡檢測吳郭魚中孔雀石綠的規範,重複萃取魚肉的實驗並用開發的拉曼檢測試片進行測試,最後與檢測機構的結果進行對比。除了上述雙金屬拉曼檢測試片外,我們還與其他實驗室合作,透過他們的製作的碳量子點材料,配合目前拉曼試紙的開法,研究出一種可耐酸的紙張基板,並且可用於檢測大腸桿菌及其代謝物。
英文摘要 As food safety problems have emerged in recent years, traditional mass spectrometer analysis for food safety detection is expensive and subject to many restrictions. Therefore, there is a market demand for rapid detection of food safety. This study collaboration between industry and school to develop a test strip for food safety testing, and it is a low-cost, simple, fast, and mass-producible SERS sensor. In this study, we developed a paper-based, bimetallic nanoparticles SERS substrate sensor: Au1Ag0.15 structure sensor, which satisfies commercialization conditions of high sensitivity, high fingerprint identification, real-time detection, repeatability, and easy to store, etc. To test the effect of food safety detection, we used two laser systems to detect the experimental malachite green extracted from tilapia tissue, and calculate the concentration through the calibration curve. Finally, compare the results of the HPLC-MS (from testing agency) and this study. In addition to the above-mentioned bimetallic Raman test strips, we collaborated with other laboratories to develop an acid-resistant paper substrate through the carbon quantum dot materials produced and the current method of Raman test strips. Detection of E. coli and its metabolites.
論文目次 中文摘要.......................................................I
Abstract......................................................II
誌謝..........................................................III
Contents......................................................IV
List of Tables................................................VII
List of Figures...............................................VII
Chapter 1. Introduction.......................................1
1.1 Raman spectroscopy........................................1
1-1-1 Raman scattering........................................1
1-1-2 Resonance Raman scattering..............................2
1-1-3 Surface-enhanced Raman scattering.......................3
1.2 Types of Precious nanoparticles in SERS platform..........5
1-2-1 Gold nanomaterials......................................5
1-2-2 Silver and bimetallic nanomaterials.....................6
1-2-3 Application of graphene in SERS substrate...............7
1-2-4 Application of carbon quantum dots in SERS substrate....8
1.3 Types and Application of SERS substrate...................8
1-3-1 Types s of SERS substrates..............................8
1-3-2 SERS technology applied to food inspection..............9
1-3-3 SERS technology applied to bacteria detection...........10
1-3-4 Filter paper-based SERS substrates......................11
1-3-5 Commercialization of SERS platform......................11
1.4 Malachite Green...........................................12
1-4-1 The toxicity of malachite green.........................12
1-4-2 Application of Malachite Green in Raman Spectroscopy....12
1-4-3 Metabolites of malachite green in organisms.............13
Chapter 2. Motivation.........................................25
Chapter 3. Materials and Methods..............................27
3.1 Materials.................................................27
3.2 Equipment.................................................29
3.3 Methods...................................................31
3.3.1 Synthesis of AuNPs SERS substrates......................31
3.3.2 Synthesis of Au-Ag SERS substrates......................31
3.3.3 Quantification of malachite green solution..............31
3.3.4 Mimic experiments of contaminated fish..................32
3.3.5 Synthesis of CQDAu3 SERS substrates.....................32
3.3.6 Bacterial cultivation and pretreatment..................33
3.3.7 Raman scattering measurement............................33
3.4 Statistical analysis......................................34
3.4.1 Analytical enhancement factors..........................34
3.4.2 Limit of detection and limit of quantification..........34
Chapter 4. Results and Discussion.............................36
Part1-Au-Ag SERS substrate sensor.............................36
4.1 Synthesis and characteristics of Au-Ag substrate.........36
4.1.1 Selection of filter paper base material.................36
4.1.2 Structure of gold-silver nanoparticles on Filter paper..37
4.1.3 Raman spectroscopy of Au-Ag SERS substrate..............40
4.1.4 Environment for preparing Au-Ag SERS substrate..........41
4.1.5 Repeatability and stability of Au-Ag SERS substrate.....42
4.2 Analysis of malachite green on SERS substrate............43
4.2.1 Analysis of malachite green in water....................43
4.2.2 Analysis of malachite green in extract environment......44
4.2.3 Analysis of malachite green on SERRS system.............46
4.3 Detection results of contaminated fish...................47
Part2- CQDAu3 SERS substrate sensor...........................49
4.4 Synthesis and characteristics of CQDAu3 substrate........49
4.4.1 Structure of CQD-gold nanoparticles on Filter paper.....49
4.4.2 Acid resistance of CQDAu3 SERS substrate................50
4.4.3 Hydrazine for CQD substrate production..................52
4.4.4 CQDAu3 substrate used in bacteria detection.............53
Chapter 5. Conclusion.........................................82
Reference...........................................84
參考文獻 1. Smekal, A., Zur Quantentheorie der Dispersion. Naturwissenschaften 1923, 11 (43), 873-875.
2. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
3. Handbook of Instrumental Techniques for Analytical Chemistry. Journal of Liquid Chromatography & Related Technologies 1998, 21 (19), 3072-3076.
4. Liang, Z.; Sun, J.; Jiang, Y.; Jiang, L.; Chen, X., Plasmonic Enhanced Optoelectronic Devices. Plasmonics 2014, 9 (4), 859-866.
5. Raman, C. V., A new radiation [Reproduced from Indian J. Phys., 1928, 2, 387–398]. Current Science 1998, 74 (4), 382-386.
6. Beilby, A. L., Principles of instrumental analysis (Skoog, Douglas A.). Journal of Chemical Education 1972, 49 (6), A362.
7. Collection and Detection of Raman Scattering Signal-to-Noise in Raman Spectroscopy Instrumentation Overview and Spectrometer Performance Sampling Modes in Raman Spectroscopy. Raman Spectroscopy for Chemical Analysis 2000, 35-47.
8. Efremov, E., Advances in Analytical Resonance Raman Spectroscopy. 2008.
9. Gill, D.; Kilponen, R. G.; Rimai, L., Resonance Raman Scattering of Laser Radiation by Vibrational Modes of Carotenoid Pigment Molecules in Intact Plant Tissues. Nature 1970, 227 (5259), 743-744.
10. Asher, S. A., UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 1. Analytical Chemistry 1993, 65 (2), 59A-66A.
11. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
12. Mabrouk, P. A., Modern Raman SpectroscopyA Practical Approach By Ewen Smith (Strathclyde University, Glasgow, U.K.) and Geoffrey Dent (Intertek ASG and UMIST, Manchester, U.K.). John Wiley & Sons, Ltd:  Chichester. 2005. xii + 210 pp. $45.00. ISBN 0-471-49794-0. Journal of the American Chemical Society 2005, 127 (33), 11876-11877.
13. Kukushkin, V.; Van'kov, A.; Kukushkin, I., Long-range manifestation of surface-enhanced Raman scattering. Soviet Journal of Experimental and Theoretical Physics Letters 2013, 98, 64-69.
14. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830.
15. Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews 2014, 43 (10), 3426-3452.
16. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
17. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C 2007, 111 (37), 13794-13803.
18. Baker, M. J.; Hughes, C. S.; Hollywood, K. A., Raman spectroscopy. In Biophotonics: Vibrational Spectroscopic Diagnostics, Morgan & Claypool Publishers: 2016; pp 3-1-3-13.
19. Yilmaz, A.; Yilmaz, M., Bimetallic Core-Shell Nanoparticles of Gold and Silver via Bioinspired Polydopamine Layer as Surface-Enhanced Raman Spectroscopy (SERS) Platform. Nanomaterials (Basel) 2020, 10 (4), 688.
20. Yang, Y.; Zhang, Q.; Fu, Z.-W.; Qin, D., Transformation of Ag Nanocubes into Ag–Au Hollow Nanostructures with Enriched Ag Contents to Improve SERS Activity and Chemical Stability. ACS Applied Materials & Interfaces 2014, 6 (5), 3750-3757.
21. Zhang, J.; Winget, S. A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z.-X.; Qin, D., Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy. ACS Nano 2016, 10 (2), 2607-2616.
22. Hong, S.; Li, X., Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. Journal of Nanomaterials 2013, 2013, 790323.
23. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B 2006, 110 (32), 15700-15707.
24. Miao, Z.; Gao, Z.; Chen, R.; yu, X.; Su, Z.; Wei, G., Surface-bioengineered Gold Nanoparticles for Biomedical Applications. Current Medicinal Chemistry 2018, 25.
25. von Maltzahn, G.; Centrone, A.; Park, J.-H.; Ramanathan, R.; Sailor, M. J.; Hatton, T. A.; Bhatia, S. N., SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating. Adv Mater 2009, 21 (31), 3175-3180.
26. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M., Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering. ACS Nano 2014, 8 (6), 5833-5842.
27. Hajfathalian, M.; Gilroy, K. D.; Golze, S. D.; Yaghoubzade, A.; Menumerov, E.; Hughes, R. A.; Neretina, S., A Wulff in a Cage: The Confinement of Substrate-Based Structures in Plasmonic Nanoshells, Nanocages, and Nanoframes Using Galvanic Replacement. ACS Nano 2016, 10 (6), 6354-6362.
28. Xie, J.; Zhang, Q.; Lee, J. Y.; Wang, D. I. C., The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications. ACS Nano 2008, 2 (12), 2473-2480.
29. Lee, J.; Hua, B.; Park, S.; Ha, M.; Lee, Y.; Fan, Z.; Ko, H., Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 2014, 6 (1), 616-623.
30. Hou, Y.; Laursen, A.; Zhang, J.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I., Layered Nanojunctions for Hydrogen-Evolution Catalysis. Angewandte Chemie (International ed. in English) 2013, 52.
31. Seery, M. K.; George, R.; Floris, P.; Pillai, S. C., Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2007, 189 (2), 258-263.
32. Hajizadeh, S.; Farhadi, K.; Forough, M.; Sabzi, R. E., Silver nanoparticles as a cyanide colorimetric sensor in aqueous media. Analytical Methods 2011, 3 (11), 2599-2603.
33. Wei, C.; Li, M.; Zhao, X., Surface-Enhanced Raman Scattering (SERS) With Silver Nano Substrates Synthesized by Microwave for Rapid Detection of Foodborne Pathogens. Front Microbiol 2018, 9, 2857-2857.
34. Cui, Y.; Ren, B.; Yao, J.-L.; Gu, R.-A.; Tian, Z.-Q., Synthesis of AgcoreAushell Bimetallic Nanoparticles for Immunoassay Based on Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry B 2006, 110 (9), 4002-4006.
35. Kumar, G. V. P.; Shruthi, S.; Vibha, B.; Reddy, B. A. A.; Kundu, T. K.; Narayana, C., Hot Spots in Ag Core−Au Shell Nanoparticles Potent for Surface-Enhanced Raman Scattering Studies of Biomolecules. The Journal of Physical Chemistry C 2007, 111 (11), 4388-4392.
36. Alvarez-Puebla, R. A.; Ross, D. J.; Nazri, G. A.; Aroca, R. F., Surface-Enhanced Raman Scattering on Nanoshells with Tunable Surface Plasmon Resonance. Langmuir 2005, 21 (23), 10504-10508.
37. Cheng, Z.; Wang, R.; Xing, Y.; Zhao, L.; Choo, J.; Yu, F., SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst 2019, 144 (22), 6533-6540.
38. Intartaglia, R.; Das, G.; Bagga, K.; Gopalakrishnan, A.; Genovese, A.; Povia, M.; Di Fabrizio, E.; Cingolani, R.; Diaspro, A.; Brandi, F., Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications. Physical Chemistry Chemical Physics 2013, 15 (9), 3075-3082.
39. Jiji, S. G.; Gopchandran, K. G., Au–Ag hollow nanostructures with tunable SERS properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 171, 499-506.
40. Yu, W.; Huang, Y.; Pei, L.; Fan, Y.; Wang, X.; Lai, K., Magnetic Fe3O4/Ag Hybrid Nanoparticles as Surface-Enhanced Raman Scattering Substrate for Trace Analysis of Furazolidone in Fish Feeds. Journal of Nanomaterials 2014, 2014, 796575.
41. Sivashanmugan, K.; Lee, H.; Syu, C.-H.; Liu, B. H.-C.; Liao, J.-D., Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue. Journal of the Taiwan Institute of Chemical Engineers 2017, 75, 287-291.
42. Choi, J.; Kim, J.-H.; Oh, J.-W.; Nam, J.-M., Surface-enhanced Raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures. Nanoscale 2019, 11 (43), 20379-20391.
43. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008, 8 (10), 3498-3502.
44. Dalfovo, M. C.; Lacconi, G. I.; Moreno, M.; Yappert, M. C.; Sumanasekera, G. U.; Salvarezza, R. C.; Ibañez, F. J., Synergy between Graphene and Au Nanoparticles (Heterojunction) towards Quenching, Improving Raman Signal, and UV Light Sensing. ACS Applied Materials & Interfaces 2014, 6 (9), 6384-6391.
45. Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhao, X. J.; Huang, C. Z., Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chemical Communications 2011, 47 (9), 2604-2606.
46. Wang, X.; Cao, L.; Lu, F.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y.-P., Photoinduced electron transfers with carbon dots. Chemical Communications 2009, (25), 3774-3776.
47. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P., Carbon Dots for Multiphoton Bioimaging. Journal of the American Chemical Society 2007, 129 (37), 11318-11319.
48. Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P., Carbon Dots for Optical Imaging in Vivo. Journal of the American Chemical Society 2009, 131 (32), 11308-11309.
49. Feng, Y.; Zhao, J.; Yan, X.; Tang, F.; Xue, Q., Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon 2014, 66, 334-339.
50. Hu, Y.; Feng, S.; Gao, F.; Li-Chan, E. C. Y.; Grant, E.; Lu, X., Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chemistry 2015, 176, 123-129.
51. Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K., Fabrication of Colorless Organic Materials Exhibiting White Luminescence Using Normal and Excited-State Intramolecular Proton Transfer Processes. ACS Applied Materials & Interfaces 2011, 3 (3), 654-657.
52. Park, M.; Jung, H.; Jeong, Y.; Jeong, K.-H., Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering. ACS Nano 2017, 11 (1), 438-443.
53. Tseng, S.-C.; Yu, C.-C.; Wan, D.; Chen, H.-L.; Wang, L. A.; Wu, M.-C.; Su, W.-F.; Han, H.-C.; Chen, L.-C., Eco-Friendly Plasmonic Sensors: Using the Photothermal Effect to Prepare Metal Nanoparticle-Containing Test Papers for Highly Sensitive Colorimetric Detection. Analytical Chemistry 2012, 84 (11), 5140-5145.
54. Tseng, S.-Y.; Li, S.-Y.; Yi, S.-Y.; Sun, A. Y.; Gao, D.-Y.; Wan, D., Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Applied Materials & Interfaces 2017, 9 (20), 17306-17316.
55. Zhang, R.; Xu, B.-B.; Liu, X.-Q.; Zhang, Y.-L.; Xu, Y.; Chen, Q.-D.; Sun, H.-B., Highly efficient SERS test strips. Chemical Communications 2012, 48 (47), 5913-5915.
56. Zhong, L.-B.; Yin, J.; Zheng, Y.-M.; Liu, Q.; Cheng, X.-X.; Luo, F.-H., Self-Assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates. Analytical Chemistry 2014, 86 (13), 6262-6267.
57. Tang, W.; Chase, D. B.; Rabolt, J. F., Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers Via Polyelectrolyte Decoration—A 3D SERS Substrate. Analytical Chemistry 2013, 85 (22), 10702-10709.
58. Drogué, S.; DeMaria, F., Pesticide residues and trade, the apple of discord? Food Policy 2012, 37 (6), 641-649.
59. LeDoux, M., Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. Journal of Chromatography A 2011, 1218 (8), 1021-1036.
60. Masiá, A.; Suarez-Varela, M. M.; Llopis-Gonzalez, A.; Picó, Y., Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Analytica Chimica Acta 2016, 936, 40-61.
61. Kurbanoglu, S.; Ozkan, S. A.; Merkoçi, A., Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosensors and Bioelectronics 2017, 89, 886-898.
62. Jiang, X.; Li, D.; Xu, X.; Ying, Y.; Li, Y.; Ye, Z.; Wang, J., Immunosensors for detection of pesticide residues. Biosensors and Bioelectronics 2008, 23 (11), 1577-1587.
63. Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D., Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchimica Acta 2016, 183 (7), 2063-2083.
64. Zhang, W.; Asiri, A. M.; Liu, D.; Du, D.; Lin, Y., Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry 2014, 54, 1-10.
65. Villa, J. E. L.; Quiñones, N. R.; Fantinatti-Garboggini, F.; Poppi, R. J., Fast discrimination of bacteria using a filter paper–based SERS platform and PLS-DA with uncertainty estimation. Analytical and Bioanalytical Chemistry 2019, 411 (3), 705-713.
66. Lee, M.; Oh, K.; Choi, H.-K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H., Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface. ACS Sensors 2018, 3 (1), 151-159.
67. Lemire, J. A.; Harrison, J. J.; Turner, R. J., Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology 2013, 11 (6), 371-384.
68. Ansari, M. A.; Khan, H. M.; Khan, A. A.; Cameotra, S. S.; Saquib, Q.; Musarrat, J., Interaction of Al(2)O(3) nanoparticles with Escherichia coli and their cell envelope biomolecules. J Appl Microbiol 2014, 116 (4), 772-783.
69. Jyoti, K.; Baunthiyal, M.; Singh, A., Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences 2016, 9 (3), 217-227.
70. Wang, L.; Hu, C.; Shao, L., The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine 2017, Volume 12, 1227-1249.
71. Brown, K. R.; Fox, A. P.; Natan, M. J., Morphology-Dependent Electrochemistry of Cytochrome c at Au Colloid-Modified SnO2 Electrodes. Journal of the American Chemical Society 1996, 118 (5), 1154-1157.
72. Efrima, S.; Bronk, B. V., Silver Colloids Impregnating or Coating Bacteria. The Journal of Physical Chemistry B 1998, 102 (31), 5947-5950.
73. Zeiri, L.; Bronk, B. V.; Shabtai, Y.; Czégé, J.; Efrima, S., Silver metal induced surface enhanced Raman of bacteria. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 208 (1), 357-362.
74. Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C., SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles. Analytical Chemistry 2014, 86 (3), 1525-1533.
75. Alexander, T. A., Development of Methodology Based on Commercialized SERS-Active Substrates for Rapid Discrimination of Poxviridae Virions. Analytical Chemistry 2008, 80 (8), 2817-2825.
76. Zhang, H.; Sun, L.; Zhang, Y.; Kang, Y.; Hu, H.; Tang, H.; Du, Y., Production of stable and sensitive SERS substrate based on commercialized porous material of silanized support. Talanta 2017, 174, 301-306.
77. Srivastava, S.; Sinha, R.; Roy, D., Toxicological effects of malachite green. Aquatic Toxicology 2004, 66 (3), 319-329.
78. Hidayah, A. P. N.; Faridah, S.; Azura, M. S. N.; Gayah, A. R.; Othman, M.; Fatimah, A. B., Malachite Green and Leuco-Malachite Green Detection in Fish Using Modified Enzyme Biosensor. Procedia Chemistry 2016, 20, 85-89.
79. Kaskela, J.; Vainio, A.; Ollila, S.; Lundén, J., Food business operators’ opinions on disclosed food safety inspections and occurrence of disagreements with inspector grading. Food Control 2019, 105, 248-255.
80. COUNCIL, T. E. P. A. O. T., REGULATION (EC) No 1907/2006 2006.
81. Cen, Q.; He, Y.; Xu, M.; Wang, J.; Wang, Z., Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol. The Journal of Chemical Physics 2015, 142 (11), 114201.
82. Ouyang, L.; Yao, L.; Zhou, T.; Zhu, L., Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor. Analytica Chimica Acta 2018, 1027, 83-91.
83. Zhang, Y.; Yu, W.; Pei, L.; Lai, K.; Rasco, B. A.; Huang, Y., Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chemistry 2015, 169, 80-84.
84. Xiao, G.-N.; Man, S., The Effect of L-Cysteine on Surface-Enhanced Raman Scattering of Malachite Green in Silver Colloids. Spectroscopy Letters 2013, 46, 577-582.
85. Dai, L.; Song, L.; Huang, Y.; Zhang, L.; Lu, X.; Zhang, J.; Chen, T., Bimetallic Au/Ag Core–Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering. Langmuir 2017, 33 (22), 5378-5384.
86. News, B., Egg scandal: 20 tonnes sold in Denmark, food agency says. 2017.
87. News, B., China dairy products found tainted with melamine. 2010.
88. Bodelón, G.; Montes-García, V.; López-Puente, V.; Hill, E. H.; Hamon, C.; Sanz-Ortiz, M. N.; Rodal-Cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-Juste, I.; Scarabelli, L.; La Porta, A.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M., Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials 2016, 15 (11), 1203-1211.
89. Ando, J.; Fujita, K.; Smith, N. I.; Kawata, S., Dynamic SERS Imaging of Cellular Transport Pathways with Endocytosed Gold Nanoparticles. Nano Letters 2011, 11 (12), 5344-5348.
90. Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C., Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms. Green Chemistry 2018, 20 (23), 5318-5326.
91. Milwaukee, F.J. Green. Aldrich Chemical Co 1990.
92. Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L.; Walsh, M. J.; McAinsh, M. R.; Stone, N.; Martin, F. L., Using Raman spectroscopy to characterize biological materials. Nature Protocols 2016, 11 (4), 664-687.
93. Long, G. L.; Winefordner, J. D., Limit of Detection A Closer Look at the IUPAC Definition. Analytical Chemistry 1983, 55 (07), 712A-724A.
94. Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q., Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chemistry 2020, 310, 125923.
95. Armbruster, D. A.; Pry, T., Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 2008, 29 Suppl 1 (Suppl 1), S49-S52.
96. Zhang, Q.; Large, N.; Wang, H., Gold Nanoparticles with Tipped Surface Structures as Substrates for Single-Particle Surface-Enhanced Raman Spectroscopy: Concave Nanocubes, Nanotrisoctahedra, and Nanostars. ACS Applied Materials & Interfaces 2014, 6 (19), 17255-17267.
97. Ding, W.; Liu, Y.; Li, Y.; Shi, Q.; Li, H.; Xia, H.; Wang, D.; Tao, X., Water-soluble gold nanoclusters with pH-dependent fluorescence and high colloidal stability over a wide pH range via co-reduction of glutathione and citrate. RSC Advances 2014, 4 (43), 22651-22659.
98. Hu, B.; Sun, D.-W.; Pu, H.; Wei, Q., A dynamically optical and highly stable pNIPAM @ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta 2020, 218, 121188.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw