進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202016262900
論文名稱(中文) 金奈米粒子修飾之聚苯胺奈米纖維電極於無標記電化學白蛋白免疫感測器的開發
論文名稱(英文) Label-free electrochemical albumin immunosensor based on gold nanoparticle modified polyaniline nanofiber electrode
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 黃昱誠
研究生(英文) Yu-Cheng Huang
學號 N36071196
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 口試委員-莊承鑫
口試委員-賴怡璇
口試委員-龔仲偉
指導教授-林家裕
中文關鍵字 白蛋白  電化學阻抗頻譜  金奈米粒子  免疫感測器  聚苯胺  尿液分析 
英文關鍵字 Abumin  Electrochemical impedance spectroscopy  Gold nanoparticle  Immunosensor  Polyaniline  Urinalysis 
學科別分類
中文摘要 在臨床醫學研究中顯示,尿液中的白蛋白與慢性腎臟病有著高度相關,慢性腎臟病分為五期,若能夠在早期發現腎功能異常並及早進行就醫治療,患者仍可能恢復到健康狀態;反之,若已罹患中、後期慢性腎臟病,則僅能藉由藥物或洗腎來延緩病情惡化之程度。因此,為了預防腎功能之初期變異,避免病情到達不可逆階段,開發可精準量測尿液中白蛋白的感測器是不可或缺的。
本研究利用金奈米粒子修飾之聚苯胺奈米纖維電極作為固定白蛋白抗體的基材。當白蛋白抗體與白蛋白結合產生白蛋白抗體-抗原複合物時,會阻塞電解液中赤血鹽/黃血鹽氧化還原對擴散至電極表面的路徑,因而造成介面電荷轉移阻抗值增加,而此阻抗值變化量即可作為白蛋白濃度檢測之依據。本研究先進行金奈米粒子沉積條件的優化,試圖達到聚苯胺奈米纖維表面均勻修飾金奈米顆粒、提高可供抗體固定化表面積以及提高感測器靈敏度之目的。修飾電極之物化特性係透過掃描式電子顯微鏡、穿透式顯微鏡、拉曼光譜以及紫外線/可見光分光光譜等分析技術分析,而電極之感測性能則由電化學交流頻譜進行分析。結果顯示所開發之白蛋白電化學免疫型感測器具有優良感測性能,包括高靈敏度(24.52 Ω/log(mg/dL))、低偵測下限(0.02 mg/dL),寬線性範圍(0.02- 30.0 mg/dL),以及高準確性(誤差<4.5%)。
英文摘要 SUMMARY
Clinical studies have shown that urine albumin is highly related to chronic kidney disease (CKD). CKD can be divided into five stages, and if abnormal kidney function can be identified and treated at early stage, the patients can recover their healthy state. Conversely, the patients with CKD at middle and late stages won’t recover their healthy state, and require the use of drugs or dialysis to slow down the deterioration of the disease. To prevent the kidney failure, it is therefore indispensable to develop a sensor with high accuracy towards the detection of urine albumin.
In this study, gold nanoparticles modified polyaniline nanofiber electrode was prepared and used as the substrate for the immobilization of albumin antibody. When the albumin antibody interacts with albumin to form the albumin antibody-antigen complex, the diffusion path of [Fe(CN)6]3-/[Fe(CN)6]4- redox couples from the bulk electrolyte to the electrode surface will be blocked, which results in the increase in the interfacial charge transfer resistance. The changes in the resistance induced by the albumin can therefore be used as the basis for the detection of urine albumin. The optimization on the conditions for the electrodeposition of gold nanoparticles was performed with an aim at achieving the uniform modification of the gold nanoparticles on the surface of the polyaniline nanofibers, increasing the surface area available for antibody immobilization, and increasing the sensitivity of the sensor.
The physical and chemical properties of the modified electrode were analyzed by scanning electron microscope, transmission electron microscope, and Raman spectroscopy, and the sensing performance of the electrode was analyzed by AC electrochemical impedance spectroscopy. The results show that the developed albumin electrochemical immune sensor has excellent sensing performance, including high sensitivity (24.52 log(mg/dL)), low detection limit (0.02 mg/dL), and wide linear range (0.02- 30.0 mg/dL), and high accuracy (error <4.5%)

Keywords: Abumin; Electrochemical impedance spectroscopy; Gold nanoparticle; Immunosensor; Polyaniline; Urinalysis.
論文目次 總目錄
摘要 I
Extended Abstract II
致謝 XI
總目錄 XII
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 化學感測器 2
1.2.1 基本結構與工作原理 3
1.2.2 生物感測器 5
1.2.2.1 生物辨識單元 5
1.2.2.2 生物辨識單元於傳感器之修飾 10
1.2.3 傳感器類型 12
1.3 白蛋白 14
1.3.1 白蛋白感測器 18
1.4 研究動機 20
第二章 原理與文獻回顧 22
2.1 聚苯胺 22
2.2 金奈米粒子 24
2.3 抗體的固定化 26
2.4 電化學阻抗分析 30
2.4.1 電路元件 30
2.4.2 系統之模擬電路 32
第三章 實驗方法 41
3.1 實驗藥品 41
3.2 實驗儀器 42
3.3 電極表面鍍金修飾 42
3.3.1 物理濺鍍 42
3.3.2 直流電電鍍 42
3.3.2.1 苯胺之電聚合 42
3.3.2.2 金奈米粒子之電鍍 43
3.4 免疫修飾電極的建構 43
3.4.1 金電極表面胺化處理 43
3.4.2 抗體之方向性固定 44
3.4.3 非特定活性點屏蔽 44
3.4.4 白蛋白之吸附 44
3.5 感測電極電化學分析 44
3.5.1 交流阻抗分析 44
3.6 實際尿液應用 45
第四章 結果與討論 46
4.1 物理濺鍍金電極之白蛋白免疫感測器 46
4.1.1 免疫修飾電極的設計 46
4.1.2 免疫修飾電極對白蛋白之感測 47
4.1.2.1 等效電路的模擬 47
4.1.2.2 濺鍍金電極之檢量線 48
4.1.3 免疫修飾電極應用於真實樣品之感測 52
4.2 聚苯胺/金奈米粒子電極之白蛋白免疫感測器 54
4.2.1 電極表面型態與物性分析 54
4.2.2 免疫修飾電極的設計 61
4.2.3 免疫修飾電極對白蛋白之感測 62
4.2.3.1 等效電路的模擬 62
4.2.3.2 聚苯胺/金奈米粒子電極之檢量線 64
4.2.4 免疫修飾電極應用於真實樣品之感測 67
第五章 結論與未來展望 70
5.1 結論 70
5.2 建議與未來展望 70
第六章 參考文獻 72

表目錄
Table 1- 1 HSA concentrations found in normal urine and blood serum 14
Table 1- 2 Definition of microalbuminuria 15
Table 1- 3 Current CKD nomenclature used by KDIGO 17

Table 2- 1 Different oxidation state of PANI 23
Table 2- 2 Physical and chemical interactions between antibodies and gold nanoparticles surface in bioconjugation process. 25
Table 2- 3 Non-covalent and covalent modes between antibodies and gold nanoparticles surface in bioconjugation process. 25
Table 2- 4 Comparison of different site-directed antibody immobilization techniques. 29

Table 3- 1 List of chemicals and materials used in this thesis. 41
Table 3- 2 List of instrument used. 42

Table 4- 1 EIS response parameters obtained after nonlinear fit of the experimental data using Randles equivalent circuit. 50
Table 4- 2 Rct values of different HSA concentration.(each concentration is tested 3 times). 51
Table 4- 3 Urine detection by SPCE|Au|Ab-HSA compared with TBATM-25FR. 53
Table 4- 4 EIS response parameters obtained after nonlinear fit of the experimental. 65
Table 4- 5 Rct values of different HSA concentration.(each concentration is tested 3 times). 66
Table 4- 6 Urine detection by SPCE|PANI|AuNPs|Ab-HSA electrode compared with TBATM-25FR. 68
Table 4- 7 Comparison of the previously reported electrochemical sensing in urine. 69

圖目錄
Figure 1- 1十大死因死亡人數及死亡率 1
Figure 1- 2 Chemical sensor system. 3
Figure 1- 3 Schematic representation of Y-shaped structure of an antibody. 5
Figure 1- 4 Schematic representation of: (A) monoclonal Ab binding a specific epitope (it's represented by a square) on an Ag and (B) polyclonal Ab binding to several epitopes on an Ag. 6
Figure 1- 5 General DNA biosensor design. 7
Figure 1- 6 The SELEX process. 8
Figure 1- 7 The molecular imprinting process. 9

Figure 2- 1 (A) 3D and (B) 2D structures of polyaniline. 22
Figure 2- 2 Chemical structures of emeraldine (i) before protonation (emeraldine base), (ii)–(iv) after 50% protonation: (ii) formation of bipolaron, (iii) formation of polaron and (iv) separation of two polarons. 24
Figure 2- 3 Two main approaches to antibody immobilization. A—random, and B—site-directed antibody immobilization. 26
Figure 2- 4 Schematic representation of an antibody molecule. Fab—fragment, antigen-binding; Fc—fragment, crystallizable; CHO—carbohydrate moiety; VL—variable domain of the light chain; VH—variable domain of the heavy chain; CL—constant domain of the light chain; and CH1, CH2, CH3—first, second and third constant domains of the heavy chain. 27
Figure 2- 5 Schematic representation of site-directed antibody immobilization methods. Via (a)Fc binding protiens, (b)antibody fragments and (c)oxidised oligosaccharide moieties. 28
Figure 2- 6 Phasor diagram between alternating current and voltage signals at frequency 32
Figure 2- 7 Nyquist plot for a series RC circuit with R=100 and C=1F. 33
Figure 2- 8 Nyquist plot for a parallel RC circuit with R=100 and C=1F. 34
Figure 2- 9 Randles equivalent circuit 34
Figure 2- 10 Impedance plane plot for low frequency. 36
Figure 2- 11 Impedance plane plot for high frequency. 37
Figure 2- 12 Impedance plot for an electrochemical system. Regions of mass-transfer and kinetic control are found at low and high frequencies, respectively. 38
Figure 2- 13 Nyquist plot of a CPE with different  values in parallel with a resistor. 39
Figure 2- 14 Types of Warburg impedance and transition region on a Nyquist plot. 40

Figure 3- 1 The set-up of the electrochemical cell. (a) electropolymerization of aniline, (b) electrodeposition of gold. 43
Figure 3- 2 The set-up for electrochemical impedance spectrometry measurement. 45

Figure 4- 1 Nyquist plot of EIS measurement for each immobilization step. (i)-SPCE, (ii)-SPCE|Au, (iii)-SPCE|Au|HS-PEG-NH2, (iv)-SPCE|Au|HS-PEG-NH2|Ab-HSA, (v)-SPCE|Au|HS-PEG-NH2|Ab-HSA|Gly, (vi)-SPCE/Au|HS-PEG-NH2|Ab-HSA|Gly after incubation with 2mg/dL HSA solution. 46
Figure 4- 2 Nyquist plot of SPCE|Au|HS-PEG-NH2|Ab-HSA|Gly after incubation with 2mg/dL HSA.point-experimental data and line-fitting data. 48
Figure 4- 3 Nyquist plot of SPCE|Au|Ab-HSA in the presence of different amount of HSA. 49
Figure 4- 4 Plot of charge transfer resistance (Rct) vs. HSA concentrations. 51
Figure 4-5 Results of urine HSA analyzed by SPCE|Au|Ab-HSA electrode and TBATM-25FR. 53
Figure 4- 6 SEM images of polyaniline modified electrodes prepared at different deposition current densities: (a): 0.1 mA/cm2, (b): 0.5 mA/cm2, (c): 1 mA/cm2, (d): 5 mA/cm2, (e): 10 mA/cm2, (f): 12.5 mA/cm2, scale bar: 5 m. 55
Figure 4- 7 (a)-(f) Cyclic voltammetry of polyaniline modified electrodes prepared at different deposition current densities: (a) 0.1 mAcm-2, (b) 0.5 mAcm-2, (c) 1 mAcm-2, (d) 5 mAcm-2, (e) 10 mAcm-2, (f) 12.5 mAcm-2, (g) plots of net current density vs. scan rate 56
Figure 4- 8 SEM images of gold nanoparticles modified polyaniline nanofiber modified electrodes prepared with different deposition current densities: (a, a’):-10 mA/cm2, (b, b’):-5 mA/cm2, (c, c’):-1 mA/cm2, scale bars for (a, b, c) and (a’, b’, c’) are 1 and 5 m, respectively. 58
Figure 4- 9 (a, c) TEM images of polyaniline (b) EDS analysis for the square region of (a) (d, e) EDS elemental mapping images for C (blue in d), and N (red in e). 59
Figure 4- 10 (a) TEM image of gold nanoparticles modified polyaniline(b) EDS analysis for (a), (c, d, e) EDS elemental mapping images for Au (red in c), C (blue in d), and N (green in e). 60
Figure 4- 11 Raman spectroscopy of (ⅰ) FTO@PANI and (ⅱ) FTO@PANI@AuNPs 61
Figure 4- 12 Nyquist plot of EIS measurement for each immobilization step.Insert figure is bare electrode(SPCE).(i)-SPCE|PANI, (ii)-SPCE|PANI|AuNPs, (iii)- SPCE|PANI|AuNPs |HS-PEG-NH2, (iv)- SPCE|PANI|AuNPs|HS-PEG-NH2|Ab-HSA, (v)- SPCE|PANI|AuNPs |HS-PEG-NH2|Ab-HSA|Gly, (vi)- SPCE|PANI|AuNPs |HS-PEG-NH2|Ab-HSA|Gly after incubation with 2mg/dL HSA solution. 62
Figure 4- 13 Nyquist plot of SPCE/PANI/AuNPs/HS-PEG-NH2/Ab-HSA/Gly after incubation with 20mg/dL HSA.point-experimental data, line-fitting data. 63
Figure 4- 14 (A)Warburg impedance for the approximation finite space diffusion model.(B)Extension Randles equivalent circuit. 64
Figure 4- 15 Nyquist plot of SPCE|PANI|AuNPs|Ab-HSA in the presence of different amount of HSA. 65
Figure 4- 16 Plot of charge transfer resistance (Rct) vs. HSA concentrations. 66
Figure 4- 17 Results of urine HSA analyzed by SPCE|PANI|AuNPs|Ab-HSA electrode and TBATM-25FR. 67

參考文獻 1. 2018年國人全民健康保險就醫疾病資訊. 2018; Available from: https://www.nhi.gov.tw/Content_List.aspx?n=D529CAC4D8F8E77B&topn=23C660CAACAA159D.
2. 107年死因統計結果分析. 2018; Available from: https://dep.mohw.gov.tw/DOS/lp-4472-113.html.
3. Bikbov, B., et al., Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2020. 395(10225): p. 709-733.
4. Hulanicki, A., S. Glab, and F. Ingman, Chemical sensors: definitions and classification. Pure and applied chemistry, 1991. 63(9): p. 1247-1250.
5. Currie, L.A., Nomenclature in evaluation of analytical methods including detection and quantification capabilities:(IUPAC Recommendations 1995). Analytica Chimica Acta, 1999. 391(2): p. 105-126.
6. Booksh, K.S. and B.R. Kowalski, Theory of analytical chemistry. Analytical Chemistry, 1994. 66(15): p. 782A-791A.
7. Loock, H.-P. and P.D. Wentzell, Detection limits of chemical sensors: Applications and misapplications. Sensors and Actuators B: Chemical, 2012. 173: p. 157-163.
8. Vig, J.R. and F.L. Walls. A review of sensor sensitivity and stability. in Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No. 00CH37052). 2000. IEEE.
9. Thévenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification. Biosensors and bioelectronics, 2001. 16(1-2): p. 121-131.
10. Currie, L.A. and G. Svehla, Nomenclature for the presentation of results of chemical analysis (IUPAC Recommendations 1994). Pure and applied chemistry, 1994. 66(3): p. 595-608.
11. Thévenot, D.R., et al., Electrochemical Biosensors: Recommended Definitions and Classification*. Analytical Letters, 2007. 34(5): p. 635-659.
12. Karunakaran, C., R. Rajkumar, and K. Bhargava, Introduction to Biosensors, in Biosensors and Bioelectronics. 2015. p. 1-68.
13. Felix, F.S. and L. Angnes, Electrochemical immunosensors - A powerful tool for analytical applications. Biosens Bioelectron, 2018. 102: p. 470-478.
14. Liu, A., et al., Development of electrochemical DNA biosensors. TrAC Trends in Analytical Chemistry, 2012. 37: p. 101-111.
15. Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv, 2012. 30(3): p. 489-511.
16. Rogers-H, H.R.P. and S.K. Schiigerl, Advances in Biochemical Engineering IBiotechnology.
17. Grimes, C.A., et al., Wireless magnetoelastic resonance sensors: A critical review. Sensors, 2002. 2(7): p. 294-313.
18. Yu, Y., et al., Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. Biosens Bioelectron, 2017. 94: p. 657-662.
19. Omidfar, K., et al., Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron, 2011. 26(10): p. 4177-83.
20. 李佩賢, 張., 董淳武, 徐永建, 雷振宙, 張洵浩, 施雅雪, 林俊良, 一個容易被忽略的徵兆:微白蛋白尿. 內科學誌, 2009. 20: p. 275-284.
21. Samanta, S., S. Halder, and G. Das, Twisted-Intramolecular-Charge-Transfer-Based Turn-On Fluorogenic Nanoprobe for Real-Time Detection of Serum Albumin in Physiological Conditions. Anal Chem, 2018. 90(12): p. 7561-7568.
22. Lambers Heerspink, H.J., et al., Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am J Epidemiol, 2008. 168(8): p. 897-905.
23. Yuyun, M.F., A.I. Adler, and N.J. Wareham, What is the evidence that microalbuminuria is a predictor of cardiovascular disease events? Current opinion in nephrology and hypertension, 2005. 14(3): p. 271-276.
24. Foreword. American Journal of Kidney Diseases, 2002. 39(2): p. S14-S16.
25. Levey, A.S., et al., Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int, 2005. 67(6): p. 2089-100.
26. Eckardt, K.U., et al., Definition and classification of CKD: the debate should be about patient prognosis--a position statement from KDOQI and KDIGO. Am J Kidney Dis, 2009. 53(6): p. 915-20.
27. Hemmelgarn, B.R., et al., Relation between kidney function, proteinuria, and adverse outcomes. Jama, 2010. 303(5): p. 423-429.
28. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. The Lancet, 2010. 375(9731): p. 2073-2081.
29. van der Velde, M., et al., Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int, 2011. 79(12): p. 1341-52.
30. Astor, B.C., et al., Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int, 2011. 79(12): p. 1331-40.
31. Tonelli, M., et al., Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Annals of internal medicine, 2011. 154(1): p. 12-21.
32. Brodows, R.G., et al., Evaluation of a new radioimmunoassay for urinary albumin. Diabetes care, 1986. 9(2): p. 189-193.
33. Teppo, A.-M., Immunoturbidimetry of albumin and immunoglobulin G in urine. Clinical chemistry, 1982. 28(6): p. 1359-1361.
34. Schwerer, B., M. Bach, and H. Bernheimer, ELISA for determination of albumin in the nanogram range: assay in cerebrospinal fluid and comparison with radial immunodiffusion. Clinica chimica acta, 1987. 163(3): p. 237-244.
35. Aoyagi, S., et al., Determination of human serum albumin by chemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell. Analytica chimica acta, 2001. 436(1): p. 103-108.
36. Qin, Q.-P., O. Peltola, and K. Pettersson, Time-resolved fluorescence resonance energy transfer assay for point-of-care testing of urinary albumin. Clinical chemistry, 2003. 49(7): p. 1105-1113.
37. Benesch, J., A. Askendal, and P. Tengvall, Quantification of adsorbed human serum albumin at solid interfaces: a comparison between radioimmunoassay (RIA) and simple null ellipsometry. Colloids and Surfaces B: Biointerfaces, 2000. 18(2): p. 71-81.
38. Shaikh, A., et al., Comparison between immunoturbidimetry, size-exclusion chromatography, and LC-MS to quantify urinary albumin. Clin Chem, 2008. 54(9): p. 1504-10.
39. Seegmiller, J.C., et al., Comparison of urinary albumin quantification by immunoturbidimetry, competitive immunoassay, and protein-cleavage liquid chromatography-tandem mass spectrometry. Clin Chem, 2009. 55(11): p. 1991-4.
40. Meinhardt, U., Microalbuminuria in diabetes mellitus Efficacy of a new screening method in comparison with timed overnight urine collection. Journal of Diabetes and its Complications, 2003. 17(5): p. 254-257.
41. Li, H., et al. Portable-surface plasmon resonance biosensor immunoassays for the human serum albumin detection. in Key Engineering Materials. 2013. Trans Tech Publ.
42. Lai, T., et al., Clinical application of a novel sliver nanoparticles biosensor based on localized surface plasmon resonance for detecting the microalbuminuria. Acta Biochim Biophys Sin (Shanghai), 2010. 42(11): p. 787-92.
43. Huang, Z., et al., Sensitive polydopamine bi-functionalized SERS immunoassay for microalbuminuria detection. Biosens Bioelectron, 2019. 142: p. 111542.
44. Sang, S., et al., A Portable Device for Rapid Detection of Human Serum Albumin using an immunoglobulin-coating-based Magnetoelastic Biosensor. Biosens Bioelectron, 2019. 141: p. 111399.
45. Fatoni, A., et al., A novel molecularly imprinted chitosan-acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin. Analyst, 2014. 139(23): p. 6160-7.
46. Tsai, J.Z., et al., Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosens Bioelectron, 2016. 77: p. 1175-82.
47. Zhang, G., et al., A sensitive determination of albumin in urine by molecularly imprinted electrochemical biosensor based on dual-signal strategy. Sensors and Actuators B: Chemical, 2019. 288: p. 564-570.
48. Shaikh, M.O., et al., Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosens Bioelectron, 2019. 126: p. 572-580.
49. Credence Research, Inc. “Global Point-of-Care Diagnostics Testing (POCT) Market – Growth, Share, Opportunities, Competitive Analysis, and Forecast, 2016 – 2022”.
50. Dhand, C., et al., Recent advances in polyaniline based biosensors. Biosens Bioelectron, 2011. 26(6): p. 2811-21.
51. Sherman, B.C., W.B. Euler, and R.R. Force, The modern student laboratory: polyaniline-A conducting polymer: electrochemical synthesis and electrochromic properties. Journal of Chemical Education, 1994. 71(4): p. A94.
52. Bhadra, S., et al., Improvement of conductivity of electrochemically synthesized polyaniline. Journal of Applied Polymer Science, 2008. 108(1): p. 57-64.
53. Turkevich, J. and G. Kim, Palladium: preparation and catalytic properties of particles of uniform size. Science, 1970. 169(3948): p. 873-879.
54. Turkevich, J., P.C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951. 11: p. 55-75.
55. Lu, Z., et al., One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications. J Colloid Interface Sci, 2018. 525: p. 86-96.
56. Ran, F., et al., In situ polymerization and reduction to fabricate gold nanoparticle-incorporated polyaniline as supercapacitor electrode materials. Polymers for Advanced Technologies, 2018. 29(6): p. 1697-1705.
57. Choudhary, M., et al., Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom-mediated reduction of Rhodamine-B, a mechanistic approach. Journal of Materials Science, 2016. 52(2): p. 770-781.
58. Guo, S. and E. Wang, Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta, 2007. 598(2): p. 181-92.
59. Delong, R.K., et al., Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl, 2010. 3: p. 53-63.
60. Jazayeri, M.H., et al., Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensing and Bio-Sensing Research, 2016. 9: p. 17-22.
61. Kumar, S., J. Aaron, and K. Sokolov, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc, 2008. 3(2): p. 314-20.
62. Yu, M.K., J. Park, and S. Jon, Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012. 2(1): p. 3-44.
63. Makaraviciute, A. and A. Ramanaviciene, Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron, 2013. 50: p. 460-71.
64. Song, H.Y., et al., Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir, 2012. 28(1): p. 997-1004.
65. Elshafey, R., et al., Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron, 2013. 50: p. 143-9.
66. Sun, X., et al., A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens Bioelectron, 2019. 143: p. 111607.
67. Quinn, J., et al., The use of regenerable, affinity ligand-based surfaces for immunosensor applications. Biosensors and Bioelectronics, 1999. 14(6): p. 587-595.
68. Björck, L. and G. Kronvall, Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. The Journal of Immunology, 1984. 133(2): p. 969-974.
69. Balevicius, Z., et al., Evaluation of intact- and fragmented-antibody based immunosensors by total internal reflection ellipsometry. Sensors and Actuators B: Chemical, 2011. 160(1): p. 555-562.
70. Rouet, R., et al., Expression of high-affinity human antibody fragments in bacteria. Nat Protoc, 2012. 7(2): p. 364-73.
71. Duran, B.G., E. Castaneda, and F. Armijo, Development of an electrochemical impedimetric immunosensor for Corticotropin Releasing Hormone (CRH) using half-antibody fragments as elements of biorecognition. Biosens Bioelectron, 2019. 131: p. 171-177.
72. Vikholm, I., Self-assembly of antibody fragments and polymers onto gold for immunosensing. Sensors and Actuators B: Chemical, 2005. 106(1): p. 311-316.
73. Lu, B., et al., Oriented immobilization of Fab'fragments on silica surfaces. Analytical chemistry, 1995. 67(1): p. 83-87.
74. Ho, J.A., et al., Ultrasensitive electrochemical detection of biotin using electrically addressable site-oriented antibody immobilization approach via aminophenyl boronic acid. Biosens Bioelectron, 2010. 26(3): p. 1021-7.
75. Hoffman, W.L. and D.J. O'Shannessy, Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. Journal of immunological methods, 1988. 112(1): p. 113-120.
76. Wolfe, C.A. and D.S. Hage, Studies on the rate and control of antibody oxidation by periodate. Analytical biochemistry, 1995. 231(1): p. 123-130.
77. Abraham, R., et al., The influence of periodate oxidation on monoclonal antibody avidity and immunoreactivity. Journal of immunological methods, 1991. 144(1): p. 77-86.
78. Coster, H.G., T.C. Chilcott, and A.C. Coster, Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochemistry and Bioenergetics, 1996. 40(2): p. 79-98.
79. Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, 2001. 2(482): p. 580-632.
80. Popp, H., Analysis of Lithium Ion System with Electrochemical Impedance Spectroscopy Methods (EIS) for Addressing the Modelling of Ageing Phenomena. 2010.
81. Nguyen, T.Q. and C. Breitkopf, Determination of Diffusion Coefficients Using Impedance Spectroscopy Data. Journal of The Electrochemical Society, 2018. 165(14): p. E826-E831.
82. Morávková, Z. and E. Dmitrieva, Structural changes in polyaniline near the middle oxidation peak studied by in situ
Raman spectroelectrochemistry. Journal of Raman Spectroscopy, 2017. 48(9): p. 1229-1234.
83. Sinawang, P.D., et al., Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron, 2016. 77: p. 400-8.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2030-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2030-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw