進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202014391200
論文名稱(中文) 奈米壓印微影製程應用於高頻表面聲波元件之製作與實驗量測
論文名稱(英文) Nanoimprinting Lithography For Fabrication of High Frequency Surface Acoustic Wave Device
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 朱致瑋
研究生(英文) Zhi-wei Zhu
學號 N16061579
學位類別 碩士
語文別 中文
論文頁數 145頁
口試委員 指導教授-李永春
口試委員-陳英忠
口試委員-陳惠如
中文關鍵字 全氟聚醚壓印模具  高頻表面聲波元件  奈米壓印微影  舉離製程  大面積奈米圖案製作 
英文關鍵字 Perfluoropolyether imprinting mold(stamp)  Fabrication of high frequency SAW  bigger area nano-imprinting  lift-off process 
學科別分類
中文摘要 本研究成功的使用可撓性奈米壓印微影製程來製作最小線寬820 nm及860 nm左右的表面聲波高頻元件,分別有共振器及濾波器兩種設計,並完成元件頻率響應訊號的量測,頻率約在2.45 GHz 及2.34 GHz。
本文中的奈米壓印技術是使用可撓性模具結合熱壓成型的奈米壓印方法。此技術其中有兩大關鍵;第一,改良壓印系統,本研究設計了氣壓輔助治具可快速拆卸安裝之加熱盤及給氣治具,氣壓輔助治具可讓奈米壓印模具產生曲面,在壓印過程中能夠完整接觸、貼附、均勻施壓於預壓印材料上,增加大面積殘留層一致性;第二,使用全氟聚醚PFPE ( Perfluoropolyethers ) 材料來製作奈米級可撓性壓印模具並在4吋鉭酸鋰 ( LiTaO3 ) 基板上完成大面積圖案化結構及並縮短壓印製程時間。此模具特點在高解析度、低成本、可撓性、脫模能力佳。
透過本奈米壓印技術所製作不同的高頻元件會去檢視頻率響應上的趨勢變化,其影響參數包含電極對數、重疊長度、反射閘極對數、電極線寬、及階梯式濾波器…等等的變化,以利往後在設計表面聲波元件時的參考依據。
英文摘要 This thesis describes a new method to fabricated high-frequency surface acoustic wave (SAW) device , with the new method known as flexible nanoimprint lithography(FNIL), we can fabricated SAW devices with a 820 nm pitch, 860 nm pitch, and the frequency of fabricated SAW devices can reach 2.45 GHz and 2.34 GHz.
The nano-imprint technology used in this research is to use flexible nano-patterned imprint lithography combined with hot embossing nano-imprinting lithography. This nano-imprint technology has two key points. First, to improve the imprinting system, this study designed a heating plate and a gas supply tool that can be quickly disassembled and installed by the pneumatic assisted tool. This pneumatic assisted tool allows the nanoimprint mold to produce a curved surface that can be used during the imprinting process. Complete contact, attachment, and even pressure on the polymer to increase the consistency of the residual layer in a large area. Second, the use of perfluoropolyether PFPE (Perfluoropolyethers) as a material to create a flexible nano-level imprint mold on a 4-inch lithium tantalate (LiTaO3) substrate to complete a large-area patterned structure and shorten the imprint process time. The characteristics of this PFPE stamp are high resolution, low cost, flexibility and good demolding ability.
On the other hand, the high-frequency components produced in this paper will discuss the trend changes in the frequency response of changing the number of electrode pairs, overlap length, number of reflective gate pairs, and electrode line width, so as to facilitate the design of accurate surface acoustic wave devices in the future.
論文目次 摘要 I
Abstract II
誌謝 IX
目錄 X
圖目錄 XIV
表目錄 XX
第一章 緒論 1
1.1前言 1
1.2研究回顧 3
1.2.1熱壓成形奈米壓印 4
1.2.2步進感光成形奈米壓印 5
1.2.3軟微影技術 6
1.2.4金屬轉印技術 7
1.2.5雷射輔助直寫式壓印技術 9
1.3可撓性模具 10
1.4論文架構 14
第二章 奈米壓印系統改良與優化實驗架構 16
2.1 奈米壓印微影系統 16
2.1.2軟硬體整合 23
2.2可撓性PFPE奈米級壓印模具 25
2.2.1奈米壓印技術瓶頸 25
2.2.2複製奈米結構的材料選用與比較 27
2.2.3可撓性PFPE奈米級壓印模具製作 30
2.3熱固化阻劑與基板選用 36
2.3.1熱固化阻劑—mr-I7030R 36
2.3.2鉭酸鋰(LiTaO3)陶瓷基板介紹 39
2.4奈米壓印前處理 40
2.4.1基板與矽母模具清洗 40
2.4.2矽模具蒸鍍抗沾黏劑 43
第三章 奈米壓印技術應用於高頻表面聲波元件 47
3.1高頻表面聲波元件介紹 47
3.2實驗流程 50
3.3元件設計與矽母模具及PFPE壓印模仁量測 58
3.4高頻表面聲波元件製作與結構量測 71
3.4.1奈米壓印結果檢測 71
3.4.2殘留層及去除殘留層檢測 79
3.4.3 舉離製程應用檢測 89
3.4.4 乾蝕刻製程應用檢測 93
3.4.5 濕蝕刻製程應用檢測 96
3.5 結論 97
第四章 表面聲波元件訊號量測結果 98
4.1 儀器架構 98
4.2 量測結果與討論 101
第五章結論與未來展望 127
5.1結論 127
5.2未來展望 128
參考文獻 130
附錄一 133
附錄二 135
附錄三 145

參考文獻 [1] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," Applied Physics Letters, vol. 67, no. 21, pp. 3114-3116, 1995.
[2] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 4129-4133, 1996.
[3] M. Colburn, Stephen C. Johnson; Michael D. Stewart; S. Damle; Todd C. Bailey; Bernard.Choi; M.Wedlake;TimothyB.Michaelson; S.V. Sreenivasan; John G. Ekerdt; C. Grant Willson"Step and flash imprint lithography: a new approach to high-resolution patterning," in Emerging Lithographic Technologies III, 1999, vol. 3676, pp. 379-390: International Society for Optics and Photonics.
[4] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, "Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing," Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
[5] Y.-C. Lee and C.-Y. Chiu, "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching," Journal of Micromechanics and Microengineering, vol. 18, no. 7, p. 075013, 2008.
[6] 謝易達, "奈米壓印與金屬轉印技術應用於提升發光二極體發光效率," 國立成功大學機械工程學系碩士論文, 2010.
[7] M. R. Krames et al., "High-power truncated-inverted-pyramid (Al x Ga 941− x) 0.5 In 0.5 P/GaP light-emitting diodes exhibiting> 50% external quantum efficiency," Applied physics letters, vol. 75, no. 16, pp. 23652367, 1999.
[8] Y. X, AND g m. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci, vol. 28, pp.153-184, 1998.
[9] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,’’ Langmuir, vol. 18, pp. 5314-532, 2002.
[10] H. Schmid, and B. Michel, “Siloxan Polymers for high-Resolution, high-Accuracy Soft Lithography,” Macromolecules, vol. 33, pp. 3042-3049, 2000.
[11] H. Kang, J. Lee, J. Park, and H. H. Lee, “An improved method of preparing composite poly(dimethylsiloxane) moulds,” Nanotechnology, vol. 17, pp. 197-200, 2006.
[12] T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, “Soft Lithography Using Acryloxy Perfluoropolyether Composite Stamps, “ Langmuir, vol. 23, pp. 2898-2905, 2007.
[13] 張家綸, "環形氣壓控制之奈米壓印機台與工程應用," 國立成功大學機械工程學系碩士論文, 2018.
[14] 杜珮綺, "奈米壓印暨黑光阻嵌入式軟性光罩之微奈米製程與應用," 國立成功大學機械工程學系碩士論文, 2019.
[15] 王泰毅, "高精度犧牲層轉移式奈米壓印微影技術與產業應用," 國立成功大學機械工程學系碩士論文, 2019.
[16] https://www.amtech.com.tw/custom_61349.html
[17] 林俊甫, "雙埠表面聲波濾波器的模擬與量測," 國立成功大學機械工程學系碩士論文, 2003.
[18] IEEE Standard on Piezoelectricity (ANS/IEEE Standard 176-1987), Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society.
[19] 半導體晶圓廠的清潔劑 by 三聯科技股份有限公司/張和裕
[20] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering, vol. 61, pp. 441-448, 2002.
[21] 林茜荷, "可撓式奈米圖案化模具直接壓印可撓式基板之研究," 國立成功大學理學院光電科學與工程學系碩士論文, 2012.
[22] https://dahetalk.com
[23] https://www.taics.org.tw/Default.aspx
[24] https://www.ericsson.com/en
[25] 張勁燕, 第三版, 半導體製程設備, 第七章, 五南圖書出版, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw