進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2508202013230200
論文名稱(中文) 使用高韌性纖維混凝土補強RC構架含填充磚牆:耐震分析模型
論文名稱(英文) Numerical models for masonry infilled RC frames retrofitted with engineered cementitious composites
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 戴吟純
研究生(英文) Yin-Chun Dai
學號 N66074158
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-洪崇展
共同指導教授-洪李陵
口試委員-胡宣德
口試委員-劉光晏
口試委員-袁宇秉
中文關鍵字 高韌性纖維混凝土  有限元素模型  填充磚牆補強  耐震分析  OpenSees 
英文關鍵字 Engineered Cementitious Composites (ECC)  Finite element model  masonry wall retrofitted  Seismic performance  OpenSees 
學科別分類
中文摘要 構架填充磚牆之數值模擬發展至今,學者依據填充磚牆相關試驗提出模擬方法,以巨觀模型為例,透過對角等值桿件模擬磚牆,並建立磚牆等值桿件側力位移關係進行分析。填充磚牆雖能提高整體結構面內方向勁度、強度與能量消散能力,但屬於脆性材料,在地震力作用之下,可能導致面內或面外損壞。許多實驗研究結果顯示,以輕質材料─高韌性纖維混凝土(Engineering Cementitious Composites,簡稱ECC)進行填充磚牆補強,能達到在提升磚牆側向強度與能量消散之餘,避免整體結構重量大幅增加須額外加固基礎。
本研究目的在於建立一套能模擬使用高韌性纖維混凝土補強構架含填充磚牆之數值模型,構架模型利用非線性梁柱元素連接剪力與旋轉彈簧,以模擬柱構件受彈性、撓曲、剪力與鋼筋滑移之行為;磚牆模型使用最簡易常見的單根等值對角桿件,僅考慮磚牆承受壓力,依據Liberatore和Decanini(2001、2011)的建議建立磚牆側力與位移關係;ECC補強填充磚牆模型,補強層使用非線性梁柱元素模擬,考慮補強層剪力行為,以修正壓力場理論為基礎,建立破壞側力位移曲線之剪力彈簧。最後,利用此研究開發之補強分析數值模型,透過現有相關實驗結果進行驗證,結果證實此模型能合理模擬高韌性纖維混凝土補強構架填充磚牆耐震行為,可藉由模型評估補強層貢獻之側向強度。
英文摘要 Reinforced concrete frames with unreinforced masonry (URM) infilled walls represent a widely adopted building system. The analytical macro-model based on equivalent diagonal struts is often used to assess the infilled frames response. The URM infills may increase lateral stiffness, strength, and energy dissipation capacity of the bare RC frame. During the earthquake, the infilled masonry walls are damaged prematurely due to diagonal tension and compression or out-of-plane failure. A series of experiments have been performed in order to examine the impact of a thin layer of Engineered Cementitious Composites (ECC) for retrofitting infilled RC frames.
The purpose of this study is to develop a model to simulate the masonry-infilled RC frames retrofitted with ECC by OpenSees software. The numerical model of RC frame has been considered the flexural behavior by using the nonlinear beam-column element consists of shear and rotational springs on the both sides to simulate the shear and bar sliping behavior. The masonry infill wall is modelled by using a single strut element in both diagonal directions. The backbone curve of masonry walls proposed by Liberatore and Decanini is adopted as the force-displacement curves in this study. The ECC retrofitted layer connect to the infilled RC frame model by two node link element with infinite stiffness in three dimensions. Considering the flexural and shear behavior of retrofitted layer, the model use the beam-column element and shear spring. The envelope curve of shear spring is based on the modified compression field theory (MCFT). Finally, the comparison of simulated results and experimental results indicates that the proposed model can be used efficiently in simulating of the masonry-infilled RC frames retrofitted with ECC and to be capable of predicting the lateral force of retrofitted layer.
論文目次 摘要 I
致謝 VIII
目錄 X
表目錄 XIII
圖目錄 XV
符號表 XIX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
第二章 文獻回顧 3
2.1 高韌性纖維混凝土 3
2.2 鋼筋混凝土構架填充磚牆破壞模式 5
2.3 微觀與巨觀分析模型 7
2.3-1 微觀模型 7
2.3-2 巨觀模型 8
2.4 無開口填充磚牆單根對角等值桿件模型 11
2.4-1 等值桿件側力位移關係─勁度 11
2.4-2 等值桿件側力位移關係─強度 14
2.5 磚牆補強技術 15
2.6 ECC補強鋼筋混凝土構架填充磚牆 17
2.6-1 試體介紹 17
2.6-2 實驗結果 19
2.7 ECC及鋼線網補強鋼筋混凝土構架填充磚牆 24
2.7-1 試體介紹 24
2.7-2 實驗結果 27
2.8 修正壓力場理論 (Modified Compression-Field Theory, MCFT) 29
2.8-1 MCFT應用於一般混凝土 29
2.8-1-1 諧和方程式 30
2.8-1-2 力平衡方程式 31
2.8-1-3 材料組成律 36
2.8-2 MCFT應用於高韌性纖維混凝土 37
第三章 RC構架與RC構架含填充磚牆分析 41
3.1 RC構架 41
3.1-1 基準模型建立 41
3.1-1-1 混凝土材料模型 43
3.1-1-2 鋼筋材料模型 45
3.1-1-3 RC柱非線性行為模型 46
3.1-2 RC構架模型驗證 53
3.1-2-1 模型參數設定 53
3.1-2-2 RC構架分析結果 55
3.2 RC構架含填充磚牆 58
3.2-1 基準模型建立 58
3.2-1-1 磚牆材料模型 59
3.2-2 填充磚牆側力位移關係 61
3.2-3 RC構架含填充磚牆模型驗證 63
3.2-3-1 模型參數設定 63
3.2-3-2 IF試體 67
3.2-3-3 UW試體 68
3.2-3-4 磚牆側力位移關係之參數研究 70
第四章 使用ECC補強RC構架含填充磚牆分析 86
4.1 基準模型建立 86
4.1-1 高韌性纖維混凝土材料模型 87
4.2 剪力行為模擬 89
4.2-1高韌性纖維混凝土材料組成律關係 89
4.2-2 受單向載重下之側力位移關係 91
4.3 使用ECC補強RC構架填充磚牆模型驗證 100
4.3-1 模型參數設定 100
4.3-2 IF-DL15試體 104
4.3-3 EW-25試體 106
第五章 結論與建議 108
參考文獻 110
附錄 A 構架含填充磚牆試體之磚牆等值桿件材料卡輸入參數 119
附錄 B 試體補強層MCFT計算結果 123
參考文獻 [1] 沈笠筠(2016),「低矮型超高性能纖維混凝土結構牆受反覆載重之分析模型」。國立成功大學土木工程學系碩士論文。
[2] 洪崇展,戴艾珍,顏誠皜,溫國威,張庭維(2017),新世代多功能性混凝土材料-高性能纖維混凝土,土木水利.第44卷第1期,頁33-51。
[3] 陳奕信(2003),「含磚牆RC建築結構之耐震診斷」。國立成功大學建築學系碩博士班博士論文。
[4] 黃忠良(2012),「高韌性纖維混凝土耦合結構牆之數值模型」。國立中央大學土木工程研究所碩士論文。
[5] 黃嘉德(2019),「無開口和含開口加強磚造牆體分析模型」。國立成功大學土木工程學系碩士論文。
[6] Albert, M. L., Elwi, A. E., & Cheng, J. R. (2001). Strengthening of unreinforced masonry walls using FRPs. Journal of Composites for Construction, 5(2), 76-84.
[7] Asteris, P. G., Antoniou, S. T., Sophianopoulos, D. S., & Chrysostomou, C. Z. (2011). Mathematical macromodeling of infilled frames: state of the art. Journal of Structural Engineering, 137(12), 1508-1517.
[8] Asteris, P. G., Cotsovos, D. M., Chrysostomou, C. Z., Mohebkhah, A., & Al-Chaar, G. K. (2013). Mathematical micromodeling of infilled frames: state of the art. Engineering Structures, 56, 1905-1921.
[9] Bennett, R. M., Boyd, K. A., & Flanagan, R. D. (1997). Compressive properties of structural clay tile prisms. Journal of Structural Engineering, 123(7), 920-926.
[10] Bröcker, O. (1963). Die auswertung von tragfähigkeitsversuchen an gemauerten wänden. Betonstein-Zeitung, 10, 19-21.
[11] Burton, H., & Deierlein, G. (2014). Simulation of seismic collapse in nonductile reinforced concrete frame buildings with masonry infills. Journal of Structural Engineering, 140(8), A4014016.
[12] Calvi, G. M., Bolognini, D., & Penna, A. (2004). Seismic performance of masonry-infilled RC frames: benefits of slight reinforcements. Invited lecture to “Sísmica, 6, 14-16.
[13] Cho, C. G., & Kim, Y. Y. (2009). Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels. Journal of the Computational Structural Engineering Institute of Korea, 22(6), 597-605.
[14] Christy, C. F. & Tensing, D. (2013). Experimental study on axial compressive strength and elastic modulus of the clay and fly ash brick masonry. Journal of Civil Engineering and Construction Technology, 4(4), 134-141.
[15] Comité Euro-Internationale du Béton et Fédération Internationale e la Précontrainte (CEB-FIP). (1990). “CEB-FIP model code.” 1990, Lausanne, Switzerland.
[16] Crisafulli, F. J. (1997). Seismic behaviour of reinforced concrete structures with masonry infills.
[17] Crisafulli, F. J., & Carr, A. J. (2007). Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40(2), 69-77.
[18] Crisafulli, F. J., Carr, A. J., & Park, R. (2000). Analytical modelling of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 33(1), 30-47.
[19] Dayaratnam, P. (1987). Brick and reinforced brick structures. South Asia Books.
[20] Decanini, L. D. & Fantin G. E. (1986). Modelos semplificados de la mamposteria includes en porticos. Carateristicas de Resistencia en al estado limite. VI Jornaadas Argentinas de Ingenieria Estructural. Buenos Aires, Argentina.
[21] Decanini, L. D., Gavarini C. & Bertoldi, S. H. (1993). Telai tamponati soggetti ad azioni sismiche un modello semplificato confront sperimentale e numerico. Atti del 6˚ Convegno Nazionale L’ingegneria Sismica in Italia. Perugia, Italy. 815-824.
[22] Dehghani, A., Nateghi-Alahi, F., & Fischer, G. (2015). Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames. Engineering Structures, 105, 197-208.
[23] Dolšek, M., & Fajfar, P. (2008). The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame—a deterministic assessment. Engineering Structures, 30(7), 1991-2001.
[24] Dymiotis, C., & Gutlederer, B. M. (2002). Allowing for uncertainties in the modelling of masonry compressive strength. Construction and building materials, 16(8), 443-452.
[25] El-Dakhakhni, W. W., Hamid, A. A., & Elgaaly, M. (2004). Seismic retrofit of concrete-masonry-infilled steel frames with glass fiber-reinforced polymer laminates. Journal of Structural Engineering, 130(9), 1343-1352.
[26] El-Dakhakhni, W. W., Hamid, A. A., & Elgaaly, M. (2004, August). Strength and stiffness prediction of masonry infill panels. In Proceedings of 13th World Conference on Earthquake Engineering (pp. 1-6).
[27] Elwood, K. J. (2004). Modelling failures in existing reinforced concrete columns. Canadian Journal of Civil Engineering, 31(5), 846-859.
[28] Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4).
[29] Elwood, K. J., & Moehle, J. P. (2005). Axial capacity model for shear-damaged columns. ACI Structural Journal-American Concrete Institute, 102(4), 578-587.
[30] Elwood, K. J., & Moehle, J. P. (2005). Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake Spectra, 21(1), 71-89.
[31] Engesser, F. (1907). Über weitgespannte wölbbrücken. Zeitschrift für Architektur und Ingenieurwesen, 53, 403-40.
[32] Filippou, F. C., Bertero, V. V., & Popov, E. P. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.
[33] Fukuyama, H., & Suwada, H. (2003). Basic test on compressive properties of high performance fiber reinforced cementitious composites (Part 2 Biaxial Loading Test). In Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan (pp. 421-422).
[34] Garzón-Roca, J., Marco, C. O., & Adam, J. M. (2013). Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on Neural Networks and Fuzzy Logic. Engineering Structures, 48, 21-27.
[35] Gumaste, K. S., Rao, K. N., Reddy, B. V., & Jagadish, K. S. (2007). Strength and elasticity of brick masonry prisms and wallettes under compression. Materials and structures, 40(2), 241-253.
[36] Hamoush, S. A., McGinley, M. W., Mlakar, P., Scott, D., & Murray, K. (2001). Out-of-plane strengthening of masonry walls with reinforced composites. Journal of Composites for Construction, 5(3), 139-145.
[37] Han, T. S., Feenstra, P. H., & Billington, S. L. (2003). Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading. Structural Journal, 100(6), 749-757.
[38] Hendry, A. W., & Malek, M. H. (1986). Characteristic compressive strength of brickwork walls from collected test results. MASONRY INT. Masonry Int., (7), 15.
[39] https://opensees.berkeley.edu/ 柏克萊大學地震研究中心。
[40] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
[41] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
[42] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
[43] Jiang, H., Liu, X., & Mao, J. (2015). Full-scale experimental study on masonry infilled RC moment-resisting frames under cyclic loads. Engineering Structures, 91, 70-84.
[44] Kakavand, M. R. A. (2012). Limit state material manual. Available on www. opensees. berkeley. edu, University of California, Berkeley, California.
[45] Karsan, I. D., & Jirsa, J. O. (1969). Behavior of concrete under compressive loadings. Journal of the Structural Division.
[46] Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of materials in Civil Engineering, 19(9), 728-739.
[47] Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division.
[48] Kesner, K. E., & Billington, S. L. (2001). Investigation of ductile cement based composites for seismic strengthening and retrofit. Fracture mechanics of concrete structures, 65-72.
[49] Kim, J. S., Kim, Y. Y., & Kim, J. K. (2007). Diverse application of ECC designed with ground granulated blast furnace slag. International Journal of Concrete Structures and Materials, 1(1), 11-18.
[50] Kolsch, H. (1998). Carbon fiber cement matrix (CFCM) overlay system for masonry strengthening. Journal of composites for construction, 2(2), 105-109.
[51] Kumavat, H. R. (2016). An experimental investigation of mechanical properties in clay brick masonry by partial replacement of fine aggregate with clay brick waste. Journal of the Institution of Engineers (India): Series A, 97(3), 199-204.
[52] Kyriakides, M. A., & Billington, S. L. (2014). Cyclic response of nonductile reinforced concrete frames with unreinforced masonry infills retrofitted with engineered cementitious composites. Journal of Structural Engineering, 140(2), 04013046.
[53] Li, V. C. (2008). Engineered cementitious composites (ECC) material, structural, and durability performance.
[54] Li, V. C. (2019). Mechanical Properties of Engineered Cementitious Composites (ECC). In Engineered Cementitious Composites (ECC) (pp. 133). Springer, Berlin, Heidelberg.
[55] Li, V. C., Wang, S., & Wu, C. (2001). Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Materials Journal-American Concrete Institute, 98(6), 483-492.
[56] Liberatore, L. (2001). Approcci innovativi in termini di energia e di spostamento per la valutazione della risposta sismica di strutture a più gradi di libertà (Doctoral dissertation, PhD Dissertation Thesis, Universita di Roma “La Sapienza,” Italy, December (in Italian)).
[57] Liberatore, L., & Decanini, L. D. (2011). Effect of infills on the seismic response of high-rise RC buildings designed as bare according to Eurocode 8. Ingegneria Sismica, 3, 7-23.
[58] Lumantarna, R., Biggs, D. T., & Ingham, J. M. (2014). Uniaxial compressive strength and stiffness of field-extracted and laboratory-constructed masonry prisms. Journal of Materials in Civil Engineering, 26(4), 567-575.
[59] Lunn, D. S., & Rizkalla, S. H. (2011). Strengthening of infill masonry walls with FRP materials. Journal of Composites for Construction, 15(2), 206-214.
[60] Mander, J. B., Nair, B., Wojtkowski, K., & Ma, J. (1993). An experimental study on the seismic performance of brick-infilled steel frames with and without retrofit. National Center for earthquake engineering research.
[61] Mann, W. (1982, May). Statistical evaluation of tests on masonry by potential functions. In Sixth international brick masonry conference.
[62] Menegotto, M., and Pinto, P.E. (1973). Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending. Preliminary Report IABSE, vol 13.
[63] Morsch, E. (1906). Der Eisenbetonbau, seine Anwendung und Theorie, Wayss and freytag, AG, Im Selbstverlag der Firma, Neustadt a d. Haardt, May 1902, 118 pp. Der Eisenbetonbau, seine Theorie und Anwendung.
[64] Nicola, T., Leandro, C., Guido, C., & Enrico, S. (2015). Masonry infilled frame structures: state-of-the-art review of numerical modelling. Earthquakes and Structures, 8(3), 733-759.
[65] Noh, N. M., Liberatore, L., Mollaioli, F., & Tesfamariam, S. (2017). Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. Engineering Structures, 150, 599-621.
[66] Panagiotakos, T. B., & Fardis, M. N. (1996, June). Seismic response of infilled RC frames structures. In 11th world conference on earthquake engineering (No. 225).
[67] Parra-Montesinos, G. J. (2005). High-performance fiber-reinforced cement composites: an alternative for seismic design of structures. ACI Structural Journal, 102(5), 668.
[68] Polyakov, S. V. (1960). On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall. Translations in earthquake engineering, 2(3), 36-42.
[69] Ritter, W., & Hennebique, D. B. (1899). Schweizerische Bauzeitung. Zürich, 33(7), 59-61.
[70] Sattar, S., & Liel, A. B. (2016). Seismic performance of nonductile reinforced concrete frames with masonry infill walls—I: development of a strut model enhanced by finite element models. Earthquake Spectra, 32(2), 795-818.
[71] Schmidt, T. (1989). An approach of modelling masonry infilled frames by the FE method and a modified equivalent strut method. Annual Journal on Concrete and Concrete Structures.” Darmstadt, Germany: Darmstadt University.
[72] Scott, B. D., Park, R., & Priestley, M. J. (1982, January). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. In Journal Proceedings (Vol. 79, No. 1, pp. 13-27).
[73] Shing, P. B., & Mehrabi, A. B. (2002). Behaviour and analysis of masonry‐infilled frames. Progress in Structural Engineering and Materials, 4(3), 320-331.
[74] Smith, B. S. (1967). Methods for predicting the lateral stiffness and strength of multi-storey infilled frames. Building Science, 2(3), 247-257.
[75] Stylianidis, K. C. (2012). Experimental investigation of masonry infilled R/C frames. The Open Construction and Building Technology Journal, 6(1).
[76] Thaickavil, N. N., & Thomas, J. (2018). Behaviour and strength assessment of masonry prisms. Case Studies in Construction Materials, 8, 23-38.
[77] Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.
[78] Vecchio, F. J., & Collins, M. P. (1988). Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory. ACI Structural Journal, 85(3), 258-268.
[79] Vecchio, F. J., & Emara, M. B. (1992). Shear deformations in reinforced concrete frames. ACI Structural journal, 89(1), 46-56.
[80] Walraven, J. C. (1981). Fundamental analysis of aggregate interlock. Journal of the Structural Division, 107(11), 2245-2270.
[81] Yavari, S., Lin, S. H., Elwood, K. J., Wu, C. L., Hwang, S. J., & Moehle, J. P. (2008). Study on collapse of flexure-shear-critical reinforced concrete frames. In 14th World Conference on Earthquake Engineering, Beijing, China.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw